\(\sqrt{50+2}=\sqrt{50}+\sqrt{2}\)
Tích nha
\(\sqrt{50+2}\)
\(=\sqrt{52}< 8\)
\(\sqrt{50}+\sqrt{2}>\sqrt{49}+\sqrt{1}=8\)
\(\sqrt{50+2}=\sqrt{52}< \sqrt{64}=8=7+1=\sqrt{49}+\sqrt{1}< \sqrt{50}+\sqrt{2}\)\(\sqrt{50}+\sqrt{2}\)
\(\sqrt{50+2}=\sqrt{52}\)
Mà \(\sqrt{52}< \sqrt{64}\)
\(\Rightarrow\sqrt{52}< 8\)
Lại có :
\(\sqrt{50}>\sqrt{49}\Rightarrow\sqrt{50}>7\)
\(\sqrt{2}>\sqrt{1}\Rightarrow\sqrt{2}>1\)
\(\Rightarrow\sqrt{50}+\sqrt{2}>7+1=8\)
\(\Rightarrow\sqrt{50}+\sqrt{2}>8>\sqrt{50+2}\)
Vậy \(\sqrt{50}+\sqrt{2}>\sqrt{50+2}.\)