SY

Không quy đồng , hẫy so sánh

\(\frac{5^{12}+1}{5^{13}+1}\) và \(\frac{5^{11}+1}{5^{12}+1}\)

DH
28 tháng 6 2016 lúc 20:48

công thức \(\frac{a}{b}< \frac{a+m}{b+m}\)

nên ta có :  \(\frac{5^{12}+1}{5^{13}+1}< \frac{5^{12}+1+4}{5^{13}+1+4}\)\(=\frac{5^{12}+5}{5^{13}+5}=\frac{5.\left(5^{11}+1\right)}{5.\left(5^{12}+1\right)}=\frac{5^{11}+1}{5^{12}+1}\)

=> \(\frac{5^{12}+1}{5^{13}+1}< \frac{5^{11}+1}{5^{12}+1}\)

Bình luận (0)
TN
28 tháng 6 2016 lúc 20:41

đặt A và B = 2 cái kia rồi nhân nó với 5 là đc

Bình luận (0)
SG
28 tháng 6 2016 lúc 20:44

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

Do 512 + 1/513 + 1 < 512 + 1 + 4/513 + 1 + 4

                            < 512 + 5/513 + 5

                           < 5.(511 + 1)/5.(512 + 1)

                          < 511 + 1/512 + 1

Vậy 512 + 1/513 + 1 < 511 + 1/512 + 1

Ủng hộ mk nha ^_^
 

Bình luận (0)
TN
28 tháng 6 2016 lúc 21:05

Đặt \(A=\frac{5^{12}+1}{5^{13}+1}\)và \(B=\frac{5^{11}+1}{5^{12}+1}\)

\(5A=\frac{5\left(5^{12}+1\right)}{5^{13}+1}=\frac{5^{13}+5}{5^{13}+1}=\frac{5^{13}+1+4}{5^{13}+1}=\frac{5^{13}+1}{5^{13}+1}+\frac{4}{5^{13}+1}=1+\frac{4}{5^{13}+1}\)

\(5B=\frac{5\left(5^{11}+1\right)}{5^{12}+1}=\frac{5^{12}+5}{5^{12}+1}=\frac{5^{12}+1+4}{5^{12}+1}=\frac{5^{12}+1}{5^{12}+1}+\frac{4}{5^{12}+1}=1+\frac{4}{5^{12}+1}\)

Vì 513+1>512+1 suy ra \(\frac{4}{5^{13}+1}< \frac{4}{5^{12}+1}\)

\(\Rightarrow1+\frac{4}{5^{13}+1}< 1+\frac{4}{5^{12}+1}\)

\(\Rightarrow5A< 5B\)

\(\Rightarrow A< B\)

Bình luận (0)

Các câu hỏi tương tự
VL
Xem chi tiết
NN
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
ND
Xem chi tiết
KN
Xem chi tiết
KS
Xem chi tiết