Đặt 2017 = a thì ta có
A = \(\sqrt{1+\left(a-1\right)^2+\frac{\left(a-1\right)^2}{a^2}}+\frac{a-1}{a}\)
= \(\sqrt{\frac{\left(a^2-a+1\right)^2}{1a^2}}+\frac{a-1}{a}\)
= a
Vậy cái đó bằng 2017
Đặt 2017 = a thì ta có
A = \(\sqrt{1+\left(a-1\right)^2+\frac{\left(a-1\right)^2}{a^2}}+\frac{a-1}{a}\)
= \(\sqrt{\frac{\left(a^2-a+1\right)^2}{1a^2}}+\frac{a-1}{a}\)
= a
Vậy cái đó bằng 2017
Không dùng máy tính, hãy so sánh: \(\frac{2016}{\sqrt{2017}}+\frac{2017}{\sqrt{2016}}v\text{à}\sqrt{2016}+\sqrt{2017}\)
Không dùng máy tính, hãy so sánh \(\sqrt{2017}-\sqrt{2016}\) và \(\sqrt{2016}-\sqrt{2015}\)
tính: \(\sqrt{1+2016^2+\frac{2016^2}{2017^2}}+\frac{2016}{2017}\)
Tính P=\(\frac{1}{2\sqrt{1}+1\sqrt{2}}\)+\(\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2017\sqrt{2016}+2016\sqrt{2017}}\)
Tính:
a. \(\sqrt{6+\sqrt{8}+\sqrt{12}+\sqrt{24}}\)
b. \(\sqrt{1+2016^2+\frac{2016^2}{2017^2}}+\frac{2016}{2017}\)
so sánh (ko dùng bảng số hay máy tính cầm tay):
a) \(\frac{1}{7}\sqrt{51}với\frac{1}{9}\sqrt{150}\)
b) \(\sqrt{2017}-\sqrt{2016}với\sqrt{2016}-\sqrt{2015}\)
So sánh Q=\(\frac{1-\sqrt{2}+\sqrt{3}}{1+\sqrt{2}+\sqrt{3}}+\frac{1-\sqrt{3}+\sqrt{4}}{1+\sqrt{3}+\sqrt{4}}+...+\frac{1-\sqrt{2016}+\sqrt{2017}}{1+\sqrt{2016}+\sqrt{2017}}\)với R=\(\sqrt{2017}-1\)
Không dùng máy tính, so sánh \(\sqrt{2016}-\sqrt{2017}\)và \(\sqrt{2017}-\sqrt{2018}\)
so sánh \(\sqrt{2017^2-1}-\sqrt{2016^2-1}\) và\(\frac{2.2016}{\sqrt{2017^2-1}+\sqrt{2016^2-1}}\)