\(P=\sqrt{101-2\sqrt{101}+1}+\sqrt{101+2\sqrt{101}+1+1}\)
\(=\sqrt{\left(\sqrt{101}-1\right)^2}+\sqrt{\left(\sqrt{101}+1\right)^2+1}>\sqrt{101}-1+\sqrt{101}+1=2\sqrt{101}>2.\sqrt{100}=2.10=20\)
=> P > 20
\(P=\sqrt{101-2\sqrt{101}+1}+\sqrt{101+2\sqrt{101}+1+1}\)
\(=\sqrt{\left(\sqrt{101}-1\right)^2}+\sqrt{\left(\sqrt{101}+1\right)^2+1}>\sqrt{101}-1+\sqrt{101}+1=2\sqrt{101}>2.\sqrt{100}=2.10=20\)
=> P > 20
So sánh P với 20
\(P=\sqrt{102-2\sqrt{101}}+\sqrt{103+2\sqrt{101}}=\sqrt{\left(\sqrt{101}-1\right)^2}+\sqrt{\left(\sqrt{101}+1\right)^2+1}\)
\(=\sqrt{101}-1+\sqrt{101}+1\)
các bạn giai thich jum minh chỗ \(\sqrt{\left(\sqrt{101}+1\right)^2+1}\)
sao lai = \(\sqrt{101}+1\)
đc nhỉ ??????
Không dùng bảng số hoặc máy tính, hãy so sánh:\(\frac{1}{\sqrt{3}-\sqrt{2}}với\sqrt{5}+1\)
Không dùng máy tính hãy so sánh
a, \(\sqrt{2}+\sqrt{6}+\sqrt{12}+\sqrt{20}\) và 12
b, \(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}\)và \(\sqrt{2}+\sqrt{3}+\sqrt{5}\)
Không dùng máy tính, hãy so sánh \(\sqrt{2017}-\sqrt{2016}\) và \(\sqrt{2016}-\sqrt{2015}\)
Chứng minh bất đẳng thức \(\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)với 0<|a|<=n
Áp dụng(không dùng máy tính hoặc bảng số)CMR
\(\sqrt{101}-\sqrt{99}< 0,1\)
không dùng máy tính hãy so sánh\(\frac{2014}{\sqrt{2015}}+\frac{2015}{\sqrt{2014}}\) với \(\sqrt{2014}+\sqrt{2015}\)
help me !
tính S = \(\frac{1}{3+\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+\sqrt{5}7}+.....+\frac{1}{101\sqrt{103}+103\sqrt{101}}\text{ [}\)!
help me !
tính S = \(\frac{1}{3+\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+\sqrt{5}7}+.....+\frac{1}{101\sqrt{103}+103\sqrt{101}}\text{Doumo arigatou}\)!
Chứng minh bất đẳng thức
\(\sqrt{n+a}+\sqrt{n-a}< 2\sqrt{n}\)với \(0< |a|\le n\)
áp dụng(không dùng máy tính hoặc bảng số) chứng minh rằng
\(\sqrt{101}-\sqrt{99}>0,1\)