Vì 2006/2007 ; 2007/2008 ; 2008/2009 ; 2009/2010 đều bé hơn 1 nên:
2006/2007 + 2007/2008 + 2008/2009 + 2009/2010 < 1 + 1 + 1 + 1 = 4.
Vậy ...
A=\(\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2006}\)=3-(\(\frac{1}{2007}+\frac{1}{2008}+\frac{1}{2009}\))+1+\(\frac{3}{2006}\)=4+(\(\frac{1}{2006}-\frac{1}{2007}\))+(\(\frac{1}{2006}-\frac{1}{2008}+\frac{1}{2009}\))
=> A>4 (\(\frac{1}{2006}>\frac{1}{2007}>\frac{1}{2008}>\frac{1}{2009}\))