Lời giải:
Thể tích khối nón ban đầu:
\(V=\frac{1}{3}\pi r^2h\)
Thể tích khối nón lúc sau:
\(V'=\frac{1}{3}\pi r'^2h'=\frac{1}{3}\pi (6r)^2(\frac{h}{9})=\frac{4}{3}\pi r^2h\)
\(=4V\)
Lời giải:
Thể tích khối nón ban đầu:
\(V=\frac{1}{3}\pi r^2h\)
Thể tích khối nón lúc sau:
\(V'=\frac{1}{3}\pi r'^2h'=\frac{1}{3}\pi (6r)^2(\frac{h}{9})=\frac{4}{3}\pi r^2h\)
\(=4V\)
Cho hình nón (H) có chiều cao bằng h, đường sinh tạo với mặt phẳng đáy một góc bằng \(60^0\)
a) Tính thể tích khối nón (H)
b) Tính thể tích khối cầu nội tiếp hình nón (H)
1)Trong không gian cho tam giác ABC đều có chu vi bằng 6a, gọi H là trung điểm BC. Khi quay tam giác ABC quanh trục AH ta được một hình nón tròn xoay. Tính thể tích của khối nón? 2)Cho khối lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, BC=a√2. Góc giữa B'C và đáy bằng 45⁰. Tính thể tích V của khối lăng trụ đã cho?
Với 1 đĩa tròn bằng thép trắng có bán kính R = \(\sqrt{6}\) m, phải làm một cái phễu bằng cách cắt đi 1 hình quạt của đĩa này và gấp phần còn lại thành hình nón. Cung tròn của hình quạt bị cắt đi phải bằng bao nhiêu độ để hình nón có thể tích cực đại?
Cho hình trụ (H) có chiều cao h, bán kính đường tròn đáy bằng R, O và O' là tâm của hai đáy. Gọi AB là đường kính thuộc đường tròn đáy (O), CD là đường kính thuộc đường tròn đáy (O'), góc giữa AB và CD bằng \(\alpha,\left(0< \alpha\le90^0\right)\). Tính tỉ số thể tích giữa khối tứ diện ABCD và khối trụ (H). Xác định \(\alpha\) để tỉ số đó là lớn nhất ?
Cho hình trụ có bán kính đáy r, trục OO' = 2r và mặt cầu đường kính OO'
a) Hãy so sánh diện tích mặt cầu và diện tích xung quanh của hình trụ đó ?
b) Hãy so sánh thể tích khối trụ và thể tích khối cầu được tạo nên bởi hình trụ và mặt cầu đã cho ?
Cho tứ diện ABCD có cạnh AD vuông góc với mặt phẳng (ABC) và cạnh BD vuông góc với cạnh BC. Biết AB = AD = a, tính diện tích xung quanh và thể tích của khối nón được tạo thành khi quay đường gấp khúc BDA quanh cạnh AB ?
Cho hình trụ (H) có đáy là hai đường tròn tâm O và O', bán kính đáy R = OO'. Trên đáy tâm O lấy điểm A, trên đáy tâm O' lấy điểm B sao cho AB = 2R. Tính tỉ số thể tích giữa khối tứ diện ABOO' và khối trụ (H) ?
Cho hình nón đỉnh S, đường tròn đáy tâm O bán kính r=3, đường cao SO=3. Mặt phẳng (P) di động luôn vuông góc với SO tại điểm H (nằm giữa S và O) cắt mặt nón theo giao tuyến là đường tròn (C). Mặt cầu (T) chứa (C) và tiếp xúc với đáy hình nón tại O. Thể tích khối cầu (T) đạt min =?
một tứ diện đều cạnh a có một đỉnh trùng với đỉnh hình nón ba đỉnh còn lại nội tiếp đáy hình nón , diện tích xung quanh hình nón là