Bài 3: Ôn tập chương Mặt nón, mặt trụ, mặt cầu

MN

Cho hình nón đỉnh S, đường tròn đáy tâm O bán kính r=3, đường cao SO=3. Mặt phẳng (P) di động luôn vuông góc với SO tại điểm H (nằm giữa S và O) cắt mặt nón theo giao tuyến là đường tròn (C). Mặt cầu (T) chứa (C) và tiếp xúc với đáy hình nón tại O. Thể tích khối cầu (T) đạt min =?

NL
3 tháng 10 2021 lúc 16:54

undefined

Bình luận (0)
NL
3 tháng 10 2021 lúc 16:55

- Nếu H nằm ở nửa dưới đoạn SO thì \(R\ge\dfrac{SO}{2}=\dfrac{3}{2}\)

- Nếu H nằm ở nửa trên đoạn SO, thực hiện mặt cắt qua trục nón như hình vẽ

\(SO=OA=3\Rightarrow SOA\) vuông cân \(\Rightarrow SCH\) vuông cân

\(\Rightarrow CH=SH=3-OH=3-\left(R+IH\right)=3-R-\sqrt{R^2-CH^2}\)

\(\Rightarrow3-R=CH+\sqrt{R^2-CH^2}\le\sqrt{2\left(CH^2+R^2-CH^2\right)}=R\sqrt{2}\)

\(\Rightarrow R\left(\sqrt{2}+1\right)\ge3\Rightarrow R\ge\dfrac{3}{\sqrt{2}+1}=3\left(\sqrt{2}-1\right)\)

\(V_{min}=\dfrac{4}{3}\pi R_{min}^3=8,037\) 

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
MN
Xem chi tiết
SK
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết