PB

Kết quả (b,c) của việc gieo con súc sắc cân đối và đồng chất hai lần (trong đó b là số chấm xuất hiện trong lần gieo đầu, c là số chấm xuất hiện ở lần gieo thứ hai) được thay vào phương trình x 2 + b x + c x + 1 = 0 * . Xác suất để phương trình (*) vô nghiệm là :

A. 17 36 .

B. 1 2 .

C. 1 6 .

D. 19 36 .

CT
9 tháng 5 2017 lúc 8:45

Đáp án B

Xác suất của biến cố A là n A n Ω trong đó n A số khả năng mà biến cố A có thể xảy ra,   n Ω là tất cả các khả năng có thể xảy ra.

x 2 + b x + c x + 1 = 0 *

Để phương trình (*) vô nghiệm thì phương trình   x 2 + b x + c = 0 * * có 2 trường hợp xảy ra:

TH1: PT (**) có 1 nghiệm x= -1

⇒ Δ = b 2 − 4 c = 0 1 − b + c = 0 ⇔ b 2 = 4 c c = b − 1 ⇔ b 2 = 4 b − 4 ⇔ b 2 − 4 b + 4 = 0 ⇔ b = 2 ⇒ c = 1

TH2: PT (**) vô nghiệm  ⇔ Δ = b 2 − 4 c < 0 ⇒ b 2 < 4 c ⇔ b < 2 c

Vì c là số chấm xuất hiện ở lần gieo thứ 2 nên . c ≤ 6 ⇒ b ≤ 2 6 ≈ 4,9

Mà b là số chấm xuất hiện ở lần giao đầu nên b ∈ 1 ; 2 ; 3 ; 4

Với  b=1 ta có:   c > 1 4 ⇒ c ∈ 1 ; 2 ; 3 ; 4 ; 5 ; 6 ⇒ có 6 cách chọn c.

Với b=2 ta có: c > 1 ⇒ c ∈ 2 ; 3 ; 4 ; 5 ; 6 ⇒ có 5 cách chọn c.

Với b=3 ta có:   c > 9 4 ⇒ c ∈ 3 ; 4 ; 5 ; 6 ⇒ có 4 cách chọn c.

Với b=4 ta có: c > 4 ⇒ c ∈ 5 ; 6 ⇒ có 2 cách chọn c.

Do đó có 6 + 5 + 4 + 2 = 17 cách chọn để phương trình (**) vô nghiệm.

Gieo con súc sắc 2 lần nên số phần tử của không gian mẫu n Ω = 6.6 = 36

Vậy xác suất đề phương trình (*) vô nghiệm là 1 + 17 36 = 1 2 .

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết