NH

Jup e vs ạ em cảm ơn nhiều

HT
29 tháng 8 2022 lúc 8:44

Câu 1: Ta có: \(25>24\Leftrightarrow\sqrt{25}>\sqrt{24}\Leftrightarrow5>2\sqrt{6}\)

Vậy: \(5>2\sqrt{6}\)

Câu 2: 

\(\sqrt{x^2}=5\)

\(\Leftrightarrow\left|x\right|=5\)

\(\Leftrightarrow x=5\) hoặc \(x=-5\)

Vậy \(x=5\) hoặc \(x=-5\)

Câu 3:

\(A=\sqrt{4x-4}+2\sqrt{x-1}-\sqrt{9x-9}\)

\(=\sqrt{4\left(x-1\right)}+2\sqrt{x-1}-\sqrt{9\left(x-1\right)}\)

\(=2\sqrt{x-1}+2\sqrt{x-1}-3\sqrt{x-1}\)

\(=\left(2+2-3\right)\sqrt{x-1}\)

\(=\sqrt{x-1}\)

Câu 4: Điều kiện: \(3-2x\ge0\Leftrightarrow2x\le3\Leftrightarrow x\le\dfrac{3}{2}\)

Câu 5: 

\(\dfrac{\sqrt{7}+\sqrt{5}}{\sqrt{7}-\sqrt{5}}+\dfrac{\sqrt{7}-\sqrt{5}}{\sqrt{7}+\sqrt{5}}\)

\(=\dfrac{\left(\sqrt{7}+\sqrt{5}\right)^2+\left(\sqrt{7}-\sqrt{5}\right)^2}{\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)}\)

\(=\dfrac{7+2\sqrt{35}+5+7-2\sqrt{35}+5}{7-5}\)

\(=\dfrac{24}{2}\)

\(=12\)

Câu 6: 

\(M=\left(\dfrac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{3}{\sqrt{1-a^2}}+1\right)\)

\(=\dfrac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}:\dfrac{3+\sqrt{1-a^2}}{\sqrt{1-a^2}}\)

\(=\dfrac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}:\dfrac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1-a}.\sqrt{1+a}}\)

\(=\dfrac{3+\sqrt{1-a}.\sqrt{1+a}}{\sqrt{1+a}}.\dfrac{\sqrt{1-a}.\sqrt{1+a}}{3+\sqrt{1-a}.\sqrt{1+a}}\)

\(=\sqrt{1-a}\)

Câu 7:

Ta có: \(\sqrt{x+2019}\ge0\)

\(\Leftrightarrow\sqrt{x+2019}+\sqrt{2019}\ge\sqrt{2019}\)

\(\Leftrightarrow\dfrac{1}{\sqrt{x+2019}+\sqrt{2019}}\le\dfrac{1}{\sqrt{2019}}\)

\(\Leftrightarrow\dfrac{\sqrt{2019}}{\sqrt{x+2019}+\sqrt{2019}}\le\dfrac{\sqrt{2019}}{\sqrt{2019}}\)

\(\Leftrightarrow A\le1\)

Đẳng thức xảy ra \(\Leftrightarrow x+2019=0\Leftrightarrow x=-2019\)

Vậy \(MaxA=1\Leftrightarrow x=-2019\)

Bình luận (0)