\(\left|3x-1\right|=\left|\dfrac{-1}{3}x+2\right|\)
<=> \(\left[{}\begin{matrix}3x-1=\dfrac{-1}{3}x+2\\-3x+1=\dfrac{-1}{3}x+2\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}3x-\dfrac{-1}{3}x=2+1\\-3x-\dfrac{-1}{3}x=2-1\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}\dfrac{10}{3}x=3\\\dfrac{-8}{3}x=1\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{9}{10}\\x=\dfrac{-3}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=-\dfrac{1}{3}x+2\left(x\ge\dfrac{1}{3}\right)\\3x-1=\dfrac{1}{3}x-2\left(x< \dfrac{1}{3}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{10}{3}x=3\\\dfrac{8}{3}x=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{10}\left(tm\right)\\x=-\dfrac{3}{8}\left(tm\right)\end{matrix}\right.\)