Cho các mệnh đề sau:
1) d : 2 x + y - z - 3 = 0 x + y + z - 1 = 0 phương trình tham số có dạng: x = 2 t y = 2 - 3 t z = t - 1
2) d : x + y - 1 = 0 4 y + z + 1 = 0 có phương trình chính tắc là d : x - 1 1 = y z = z + 1 4
3) Phương trình chính tắc của đường thẳng (d) đi qua điểm A(2,0,-3) và vuông góc với mặt phẳng P : 2 x - 3 y + 5 z - 4 = 0 là d : x - 2 2 = y - 3 = z + 3 5
Hỏi bao nhiêu mệnh đề đúng.
A.1
B. 3
C. 2
D. 0
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A ( a ; 0 ; 0 ) , B ( 0 ; b ; 0 ) , C ( 0 ; 0 ; c ) , trong đó a > 0 , b > 0 , c > 0 và 3 a + 1 b + 3 c = 5 . Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S) có phương trình là ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 3 ) 2 = 304 25 , khi đó thể tích của khối tứ diện OABC nằm trong khoảng nào?
A . ( 0 ; 1 2 ) .
B. (0;1).
C. (1;3).
D. (4;5).
Tổng bình phương module các nghiệm của phương trình x 2 + ( i - 1 ) x + 2 + i = 0 trong tập số phức là:
A. 2
B. 6
C. 5
D. 7
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d 1 : x - 3 - 1 = y - 3 - 2 = z + 2 1 và d 2 : x - 5 - 3 = y + 1 2 = z - 2 1 và mặt phẳng (P) có phương trình x + 2 y + 3 z - 5 = 0 . Đường thẳng Δ vuông góc với (P) cắt d 1 và d 2 có phương trình là:
A. ∆ : x - 1 1 = y + 1 2 = z 3
B. ∆ : x - 2 1 = y - 3 2 = z - 1 3
C. ∆ : x - 3 1 = y - 3 2 = z + 2 3
C. ∆ : x - 1 3 = y + 1 2 = z 1
Trong không gian Oxyz, cho hai đường thẳng d 1 : x - 3 - 1 = y - 3 - 2 = z + 2 1 , d 2 : x - 5 - 3 = y + 1 2 = z - 2 1 và mặt phẳng (P): x +2y +3z -5 =0. Đường thẳng vuông góc với (P), cắt cả d 1 v à d 2 có phương trình là
A. x - 1 3 = y + 1 2 = z 1
B. x - 2 1 = y - 3 2 = z - 1 3
C. x - 1 1 = y + 1 2 = z 3
D. x - 3 1 = y - 3 2 = z + 2 3
Trong không gian Oxyz, cho hai đường thẳng d 1 : x - 3 - 1 = y - 3 - 2 = z + 2 1 ; d 2 : x - 5 - 1 = y + 1 2 = z - 2 1 và mặt phẳng (P): x + 2y + 3z - 5 = 0. Đường thẳng vuông góc với (P), cắt d 1 , d 2 có phương trình là
A. x - 1 1 = y + 1 2 = z 3
B. x - 2 1 = y - 3 2 = z - 1 3
C. x - 3 1 = y - 3 2 = z + 2 3
D. x - 1 3 = y + 1 2 = z 1
Bài 1: giải các phương trình sau:
a) 2(x+5) - x2 - 5x = 0 b) 2x2 + 3x - 5 = 0 c) ( x - 1)2 + 4(x+2) - (x2 - 3 ) = 0
Trong không gian Oxyz, cho hai đường thẳng d 1 : x − 3 − 1 = y − 3 − 2 = z + 2 1 ; d 2 : x − 5 − 3 = y + 1 2 = z − 2 1 và P : x + 2 y + 3 z − 5 = 0. Đường thẳng vuông góc với (P) và cắt d 1 , d 2 có phương trình là:
A. x − 1 1 = y + 1 2 = z 3 .
B. x − 2 1 = y − 3 2 = z − 1 3 .
C. x − 3 1 = y − 3 2 = z + 2 3 .
D. x − 1 3 = y + 1 2 = z 1 .
Đường thẳng d song song với hai mặt phẳng P : 3 x + 12 y - 3 z - 5 = 0 , Q : 3 x - 4 y + 9 z + 7 = 0 và đồng thời cắt cả hai đường thẳng d 1 : x + 5 2 = y - 3 - 4 = z + 1 3 , d 2 : x - 3 - 2 = y + 1 3 = z - 2 4 có phương trình là
A. x + 3 8 = y + 1 3 = z - 2 4
B. x - 3 8 = y + 1 3 = z - 2 4
C. x + 3 - 8 = y + 1 3 = z + 2 4
D. x + 3 - 8 = y + 1 3 = z - 2 4
Viết phương trình mặt cầu (S) có tâm nằm trên (P): x+y+z+3=0 và cắt mặt phẳng (Q): x-2y+2z+1=0 theo một đường tròn giao tuyến (C) có tâm I ( 5 3 , - 7 3 , - 11 3 ) và bán kính bằng 2.
A. ( x + 3 ) 2 + ( y + 5 ) 2 + ( z + 1 ) 2 = 20
B. ( x - 3 ) 2 + ( y + 5 ) 2 + ( z + 1 ) 2 = 20
C. ( x + 3 ) 2 + ( y + 5 ) 2 + ( z + 1 ) 2 = 16
D. ( x - 3 ) 2 + ( y + 5 ) 2 + ( z + 1 ) 2 = 16