PB

Hình thang ABCD (AB // CD) có hai đường chéo AC và BD cắt nhau tại O. Gọi M, K, N, H lần lượt là chân đường vuông góc hạ từ O xuống các cạnh AB, BC, CD, DA. Chứng minh rằng:  O H O K = B C A D

CT
16 tháng 1 2019 lúc 14:40

Từ O kẻ đường thẳng song song với AB và CD cắt AD tại E, cắt BC tại F.

Áp dụng kết quả chứng minh ở bài 14 ta có:

OE = OF

Từ đó, ta có:

S A E O = S B F O  (1) (hai tam giác có cùng đường cao và hai đáy bằng nhau);

S D E O = S C F O  (2)

Từ (1) và (2) suy ra : S O A D = S O B C  (3)

Suy ra: OH.AD = OK.BC

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
NT
Xem chi tiết
PH
Xem chi tiết