Không phải là hình đa diện, vì trong hình đó có cạnh (chẳng hạn AB) không phải là cạnh chung của đúng hai đa giác.
Không phải là hình đa diện, vì trong hình đó có cạnh (chẳng hạn AB) không phải là cạnh chung của đúng hai đa giác.
Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng 2. Mặt phẳng (P) đi qua đường chéo BD’ cắt các cạnh CD, A'B' và tạo với hình lập phương một thiết diện, khi diện tích thiết diện đạt giá trị nhỏ nhất, cosin góc tạo bởi (P) và mặt phẳng (ABCD) bằng
A. 10 4
B. 6 3
C. 6 6
D. 3 3
Một khối đa diện được tạo thành bằng cách từ một khối lập phương cạnh bằng 3, ta bỏ đi khối lập phương cạnh bằng 1 ở một “góc” của nó như hình vẽ.
Gọi S là khối cầu có thể tích lớn nhất chứa trong H và tiếp xúc với các mặt phẳng (A'B'C'D'), (BCC'B') và (DCC'D'). Tính bán kính của S.
A . 2 + 3 3
B . 3 - 3
C . 2 3 3
D . 2
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M là trung điểm A’B’, N là trung điểm BC. Mặt phẳng (DMN) chia khối lập phương đã cho thành hai khối đa diện. Gọi (H) là khối đa diện chứa đỉnh A, (H’) là khối đa diện còn lại. Tính tỉ số V H V H '
Cho hình lập phương ABCD.A’B’C’D’, A C ∩ B D = O , A ' C ' ∩ B ' D ' = O ' . M, N, P lần lượt là trung điểm các cạnh AB, BC, CC’. Khi đó thiết diện do mặt phẳng (MNP) cắt hình lập phương là hình
A. Tam giác.
B. Tứ giác.
C. Ngũ giác.
D. Lục giác.
Cho mặt nón có chiều cao h = 6, bán kính đáy r = 3. Hình lập phương ABCD.A’B’C’D’ đặt trong mặt nón sao cho trục của mặt nón đi qua tâm hai đáy của hình lập phương, một đáy của hình lập phương nằm trong cùng một mặt phẳng đáy của hình trụ, các đỉnh của đáy còn lại thuộc các đường sinh của hình nón. Độ dài đường chéo của hình lập phương bằng
A. 3 3
B. 3 6 2
C. 6 3 2 - 1
D. 6 2 - 1
Cho hình hộp ABCD.A’B’C’D’ . Gọi E và F lần lượt là trung điểm của B’C’ và C’D’ . Mặt phẳng (AEF) chia hình hộp đó thành hai hình đa diện (H) và (H’), trong đó (H) là hình đa diện chứa đỉnh A’. Tính tỉ số giữa thể tích hình đa diện (H) và thể tích hình đa diện (H’).
Một hình lập phương có cạnh 4cm. Người ta sơn đỏ mặt ngoài của hình lập phương rồi cắt hình lập phương bằng các mặt phẳng song song với các mặt của hình lập phương thành 64 hình lập phương nhỏ có cạnh 1cm. Có bao nhiêu hình lập phương có đúng một mặt được sơn đỏ?
A. 16
B. 48
C. 8
D. 24
Một hình lập phương có cạnh 4 cm. Người ta sơn đỏ mặt ngoài của hình lập phương rồi cắt hình lập phương bằng các mặt phẳng song song với các mặt của hình lập phương thành 64 hình lập phương nhỏ có cạnh 1 cm. Có bao nhiêu hình lập phương có đúng một mặt được sơn đỏ?
A. 8
B. 16
C. 24
D. 48
Trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D' có tọa độ các đỉnh A(0;0;0), B(1;0;0), C(0;1;0) và A’(0;0;1). Gọi M là trung điểm cạnh AB và N là tâm của hình vuông ADD'A' Diện tích của thiết diện tạo bởi mặt phẳng (CMN) và hình lập phương đã cho bằng