LH

\(\hept{\begin{cases}x+y=1\\x^4+y^4=1\end{cases}}\) hpt \(\hept{\begin{cases}s=1\\p=0;p=2\Rightarrow\left(0;1\right);\left(1;0\right)\end{cases}}\)

ai làm đc giúp mình với bài này khó quá :(((

NC
8 tháng 1 2019 lúc 12:17

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(\left(x+y\right)^2-2xy\right)^2-2\left(xy\right)^2\)

Đặt x+y=S

xy=p

 \(\hept{\begin{cases}S=1\\\left(S^2-2P\right)^2-2P^2=1\end{cases}}\)

=> \(\left(1-2P\right)^2-2P^2=1\Leftrightarrow2P^2-4P\Leftrightarrow\orbr{\begin{cases}P=0\\P=2\end{cases}}\)

Với S=1; P=0 , x, y là nghiệm phuowg trình: X^2-X=0\(\Leftrightarrow\orbr{\begin{cases}X=0\\X=1\end{cases}}\)Hệ có nghiệm (0; 1) hoặc (1; 0)

Với S=1; P=2; x, y là nghiệm phương trình: x^2-x+2=0 vô nghiệm vì đen ta bé hơn 0  hoăc (x-1/2)^2+7/4 >0

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
TA
Xem chi tiết
HB
Xem chi tiết
H24
Xem chi tiết
TB
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết