\(\hept{\begin{cases}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{cases}}\)
giải hpt
giải hệ phương trình bằng phương pháp thế
\(â,\hept{\begin{cases}3x^2+\left(6-y\right)x^2-2xy=0\\x^2-x+y=-3\end{cases}}\)
\(b,\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)
\(c,\hept{\begin{cases}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{cases}}\)
\(d,\hept{\begin{cases}x\sqrt{y+1}=1\\x^2y=y-1\end{cases}}\)
\(\hept{\begin{cases}x^3+y^3=9\\x^2+2y^2=x+4y\end{cases}}\)
\(\hept{\begin{cases}3x^3+5y^3-2xy=6\\2x^3+3y^3+3xy=8\end{cases}}\)
GIẢI BẤT CỨ CÂU NÀO CŨNG ĐƯỢC NHÉ Ạ, EM CẢM ƠN TRƯỚC =))
f)
\(\hept{\begin{cases}x^3+y^3=65\\x^2y+xy^2=20\end{cases}}\)
g)
\(\hept{\begin{cases}x^2-2y^2=2x+y\\y^2-2x^2=2y+x\end{cases}}\)
h)
\(\hept{\begin{cases}x^2+2xy+3y^2=9\\2x^2+2xy+y^2=2\end{cases}}\)
i)
\(\hept{\begin{cases}x^3+y^3-xy^2=1\\4x^4+y^4=4x+y\end{cases}}\)
1) \(\hept{\begin{cases}8x^3y^3+27=18y^3\\4x^2y+6x=y^2\end{cases}}\)
2)\(\hept{\begin{cases}x^2y+2x^2+3y=15\\x^4+y^4-2x^2-4y=5\end{cases}}\)
giải hệ phương trình
1)\(\hept{\begin{cases}x^2+xy+y^2=3\\x^3+2y^3=y+2x\end{cases}}\)
2) \(\hept{\begin{cases}\frac{y^2+1}{y}=\frac{x^2+1}{x}\\x^2+3y^2=4\end{cases}}\)
3)\(\hept{\begin{cases}x^2+y^4-2xy^3=0\\x^2+2y^2-2xy=1\end{cases}}\)
\(\hept{\begin{cases}x^4+6x^2y+3xy^2+2xy+y^4+4y^2=x^3+6x^2y^2+4x^2+x+2y^2+4y\\4x^3y+6xy^2+4x+y^3+y^2+13=2x^3+3x^2y+x^2+4xy^3+8xy+y\end{cases}}\)
a) \(\hept{\begin{cases}\left(x+1\right)\left(y-1\right)=2\\\left(x-3\right)\left(y+1\right)=-6\end{cases}}\)
b) \(\hept{\begin{cases}y+xy^2=6x^2\\1+x^2y^2=5x^2\end{cases}}\)
c) \(\hept{\begin{cases}3x+5y-2xy=9\\2x+3y+xy=10\end{cases}}\)
GIẢI CÁC HỆ PHƯƠNG TRÌNH HỘ MÌNH VỚI Ạ. CẢM ƠN NHIỀU!
Giải hệ phương trình:
a)\(\hept{\begin{cases}2x+3y=9\\x-3=y-2\end{cases}}\)
b)\(\hept{\begin{cases}2x+3y+z=81\\x+2y-z=-2\\x-y=z-2y\end{cases}}\)