\(\Delta=2^2-4.1\left(-3m+5\right)\)= 4+12m-20 = 12m-16
Để pt có hai nghiệm phân biệt thì \(\Delta>0\)
<=>12m -16>0
<=>12m>16
=>\(m>\dfrac{4}{3}\)
\(\Delta=2^2-4.1\left(-3m+5\right)\)= 4+12m-20 = 12m-16
Để pt có hai nghiệm phân biệt thì \(\Delta>0\)
<=>12m -16>0
<=>12m>16
=>\(m>\dfrac{4}{3}\)
help me!!!!!!
giải hpt sau bằng phương pháp rút thế
\(\left\{{}\begin{matrix}-20y^3-3y^2+3xy+x-y=0\\x^2+y^2-3y=1\end{matrix}\right.\)
\(\sqrt{\dfrac{x+56}{16}+\sqrt{x-8}}=\dfrac{x}{8}\) gpt giúp mik nha
1. Cho 3 số thực a,b,c là 3 số thực dương.CMR:
\(\dfrac{a^3}{a^2+b^2}+\dfrac{b^3}{b^2+c^2}+\dfrac{c^3}{c^2+a^2}\ge\dfrac{a+b+c}{2}\)
2.Giải hpt:
\(\left\{{}\begin{matrix}3x^2+xz-yz+y^2=2\\y^2+xy-yz+x^2=0\\x^2-xy-yz-z^2=2\end{matrix}\right.\)
Ai giải giúp mik với.
Bµi 1: A)\(\left\{{}\begin{matrix}X=35.\left(Y+2\right)\\X=50.\left(Y-1\right)\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}Y=2X-3\\Y=X-1\end{matrix}\right.\)
C) \(\left\{{}\begin{matrix}\left(X+14\right).\left(Y-2\right)=X.Y\\\left(X-4\right).\left(Y+1\right)=X.Y\end{matrix}\right.\)
D)\(\left\{{}\begin{matrix}Y=\frac{6-X}{4}\\Y=\frac{4X-5}{3}\end{matrix}\right.\)GIẢI BÀI 1 BẰNG PHƯƠNG PHAP THẾ
Giải hệ phương trình sau:
a. \(\left\{{}\begin{matrix}\dfrac{5}{\sqrt{x-2}}+\sqrt{3-y}=8\\\dfrac{2}{\sqrt{x-2}}+3\sqrt{3-y}=11\end{matrix}\right.\)
b. \(\left\{{}\begin{matrix}\dfrac{5}{\sqrt{x}-2}+\sqrt{3-y}=8\\\dfrac{2}{\sqrt{x}-2}+3\sqrt{3-y}=11\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}3\sqrt{2x-1}+\dfrac{4}{2-\sqrt{y}}=10\\5\sqrt{2x-1}-\dfrac{8}{2-\sqrt{y}}=2\end{matrix}\right.\)
Giải hệ phương trình x^2+xy=16+2y^2 x^2y+8x=32+xy^2+8y
giải hệ phương trình : 2x-y=4 và (x-y)/2 =2
Giải hệ phương trình sau
\(\left\{{}\begin{matrix}x^3\left(y^2+3y+3\right)=3y^2\\y^3\left(z^2+3z+3\right)=3z^2\\z^3\left(x^2+3x+3\right)=3x^2\end{matrix}\right.\)
Giải hpt
a)\(\left\{{}\begin{matrix}x+y+z=1\\x+2y+4z=8\\x+3y+9z=27\end{matrix}\right.\) b)\(\left\{{}\begin{matrix}x^2+y^2+x+y=62\\xy=24\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}\dfrac{3}{2x+y}+z=2\\2y-3z=4\\\dfrac{2}{2x+y}-y=\dfrac{3}{2}\end{matrix}\right.\)