1) Ta có: AB = 1; BC = 1; AC = \(\sqrt{2}\)
AB2=1; BC2 = 1; AC2= 2 -> AB2+BC2= AC2 -> tam giác ABC vuông tại B (py ta go đảo)
Lại có AB = BC = 1 -> tam giác ABC vuông cân -> A = C = 45 độ
B = 90 độ
2) Ta có: D đối xứng với C qua B -> BD = BC = AB ( tam giác ABC vuông cân)
-> tam giác ADB cân; lại có B = 90 độ -> tam giác ADB vuông cân
3) Ta có : BE là đg phân giác góc trong -> DBE = EBA = 90 độ : 2 = 45 độ
tương tự ta có: ABF = FBC = 45 độ
-> BA là tia phân giác của EBF
4) Ta có: BF là tia pg của tam giác ABC -> BF cũng là trung tuyến -> AF = FC = BF = AC/2 (1)
ta có: tam giác ABD = ABC (2cgv) -> AC = AD
tương tự ta có: BE = EA = ED = AD/2 (2)
từ (1) và (2) -> AE = AF = BE = BF -> AEBF là hình thoi
Lại có EBF = 45 độ + 45 độ = 90 độ -> AEBF Là hình vuông
5) cm hai tam giác bằng nhau theo trường hợp cgc