Cho đường tròn tâm O có hai đường kính AB và CD vuông góc với nhau. Lấy M cung nhỏ AC, vẽ tiếp tuyến với đường tròn tâm O tại M cắt đường thẳng CD tại S. CM góc MSD = 2lần góc MBA
Từ điểm A ở ngoài đường tròn (O,R) . Vẽ 2 tiếp tuyến Ab , AC
a. cm : OA vuông góc BC
b. Lấy điểm M bất kì trên cung nhỏ BC . Vẽ tiếp tuyến tại M của (O) cắt AB , AC lần lượt tại E , F . cm : Góc EOF = \(\frac{GócBOC}{2}\)
c. Kẻ đường kính BD của đường tròn (O) và vẽ CK vuông góc BD tại K . cm : AC . CD = CK . OA
cho đường tròn tâm O bán kính R , M nằm ở miền trong của đương tròn. Qua M kẻ 2 dây cung AB và CD vuông góc với nhau tại M . I,K là TĐ của AB, CD. CM:
A,Khi AB,CD quay quanh M thì TK luoon đi qua 1 điểm cối định
b. MA^2+MB^2+MC^2+MD^2=4R^2
c,AB^2+CD^2 ko dổi khi dây AB,CD thay đổi và luôn vuông góc với nhau
2 Cho nửa đường tròn tâm O bán kính R và dây cung CD ( C,D cùng thuộc 1 nửa mặt phẳng bờ AB).H,K lần lượt là chân đg vuông góc hạ từA,B đến CD
a,CM: Sahkb=Sacb+Sadb
b,Tính Sahkb biết AB=20cm,CD=12cm và CD tạo với AB 1 góc bằng 30 độ
3. Cho tam giác ABC nội tiếp trong đường tròn tâm O bán kính R có góc A bé hơn 90 đọ. Trên cung BC ko chứa điểm A lấy M bất kỳ. D,E theo thứ tự là điểm đối xứng của M với AB và AC. tìm M để DE co độ dài lớn nnhaat
5,từ 1 điêm P nằm ở ngoài đường tròn (O),kẻ 2 tiếp tuyến PA,PB của (O) vs AB là các tiếp điểm. M là giao điểm của OP và AB. Kẻ dây cung CD đi qua M ( CD ko Qu O). 2 tiếp tuyến của đg tròn tại C và D cắt nhau tại Q. tính góc OPQ
7,Cho tam giác ABC và trực tâm H nằm trong tam giác đó. P là điểm nằm trên cung nhỏ BC của đường tròn ngoại tiếp tam giác ABC.E là chân đường cao hạ từ B đến AC. Dựng các HBH : PAQB và PADC, QA cắt HD tại F. CM:È song song vs AP.
nhờ các bạn ssieeu toán giải hộ mình với! thanks nhiều
Cho nữa đường tròn(O;R) đường kính CD. Trên nửa mặt phẳng chứa nửa đường tròn vẽ các tia Cx, Dy cùng vuông góc với CD. Qua điểm E thuộc nửa đường tròn(E khác C và D) kẻ tiếp tuyến với nửa đường tròn cắt Cx, Dy lần lượt tại A và B
Chứng minh:
a)AB=CA+DB
b)gócAOB=90 độ
c)Tìm độ dài đoạn thẳng BD, biết R=8cm và khi CA=4cm
GIẢI HỘ OANH VỚI Ạ HUHU!!!
Cho điểm A nằm ngoài đường tròn (O;R). Vẽ hai tiếp tuyến |AB,AC với đường tròn (O) (B,C là các tiếp điểm). Vẽ dường kính CD của đường tròn (O). AD cắt đường tròn (O) tại N (N khác D), gọi H là giao điểm của OA và BC. Gọi M là giao điểm của AD và BC, E là giao điểm của OA và CN. Đường thẳng vuông góc với ME cắt EN,BC,DC lần lượt tại F,P,Q.Cmr: PF=PQ
Cho nửa đường tròn tâm (O) đường kính BC và điểm A trên nửa đường tròn (O) ( A khác B,C). Hạ AH vuông góc với BC (H thuộc BC) . I,K lần lượt đối xứng với H qua AB, AC. Đường thẳng IK và tia AC cắt tiếp tuyến kẻ từ B của (O) lần lượt tại M,N. Gọi E là giao điểm của IH và AB, F là giao điểm KH và AC.
a) Chứng minh: I, A, K thẳng hàng. IK là tiếp tuyến của ( O )
b) Chứng minh: \(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AN^2}\)
c) Chứng minh: M là trung điểm của BN và MC, AH, EF đồng quy
d) Xác định vị trí điểm A trên nửa đường tròn để diện tích tứ giác BIKC lớn nhất
Cho nửa đường tròn tâm (O) đường kính BC và điểm A trên nửa đường tròn (O) ( A khác B,C). Hạ AH vuông góc với BC (H thuộc BC) . I,K lần lượt đối xứng với H qua AB, AC. Đường thẳng IK và tia AC cắt tiếp tuyến kẻ từ B của (O) lần lượt tại M,N. Gọi E là giao điểm của IH và AB, F là giao điểm KH và AC
Chứng minh: M là trung điểm của BN và MC, AH, EF đồng quy
cho đường tronf tâm O dường kính AB và điểm C trên AB (C khác A,B). lấy điểm M di động trên đường tròn ( M # A,B) .qua M kẻ đường vuông góc với CM cắt tiếp tuyến A và tiếp tuyến B lần lượt tại D và E .chứng minh AD.BE=AC
giải giúp mình vs ạ .thank :))
Cho đường tròn (O;R), điểm A nằm ngoài đường tròn, vẽ các tiếp tuyến AB,AC với đường tròn (B,C thuộc O) CD là đường kính của (O).
a)CM: BD//AO.
b)Đoạn AD cắt (O) tại I. CM: I là tâm của đường tròn nối tiếp tam giác ABC.
c) E thuộc cung nhỏ BC.Tiếp tuyến tại E với đường tròn (O) cắt AB,AC lần lượt tại M và N. Cho AO=2R. tính góc MON và chu vi tam giác AMN
cho đường tròn tâm O đường kính AB. vẽ dây cung CD vuông góc với AB tại I(I nằm giữa A và O). lấy điểm E trên cung nhỏ BC (E khác B và C) AE cắt CD tại F chứng minh:
IA.IB=IC.ID VÀ AE.AF=\(AC^2\)(Biết BEFI đã nội tiếp đường tròn)