Gọi k là ước chung nguyên tố của 18n + 3 và 21n +7
=> 18n + 3 chia hết cho k => 7.(18n+3) chia hết cho k
21n + 7 chia hết cho k => 6. (21n + 7) chia hết cho k
=> 6.(21n + 7) - 7.(18n + 3) chia hết cho k
=> 21 chia hết cho k
=> k = 3 hoặc 7
+) Nếu k = 3 => 21n + 7 chia hết cho 3 , điều này không xảy ra vì 21n luôn chia hết cho 3 ; 7 chia cho 3 dư 1 => 21n + 7 chia cho 3 dư 1 => k = 3 không xảy ra
+) Nếu k = 7: Vì 21n + 7 luôn chia hết cho 7 với mọi n; ta cần tìm n để 18n + 3 chia hết cho 7
=> 21n - 3n + 3 chia hết cho 7 => 3- 3n chia hết cho 7 => 3 - 3n = 7t (t thuộc N)
=> 1 - n = 7t/3 => n = 1 - 7t/3 vì n; t thuộc N => t = 0 => n = 1
Vậy n= 1
vào chtt đó bn có nhìu cách giải lém
.Nhận thấy 3 và 7 ; 3 và 3n+1 ; 6n+1 và 3n+1 đều là nguyên tố cùng nhau
Để A tối giản \(\Leftrightarrow\)(6n+1) khong chia het cho 7 \(\Leftrightarrow\)n khac 1
Vậy để A tối giản thì
n thoc z n khac 0 |
thằng nầy, kiếm ở mô ra rứa nguyenmanhtrung