\(333^{444}=\left(333\times4\right)^{111}=1332^{111}\)
\(444^{333}=\left(444\times3\right)^{111}=1332^{111}\)
\(1332^{111}=1332^{111}\Rightarrow333^{444}=444^{333}\)
\(333^{444}=\left(333^4\right)^{111}\)
\(444^{333}=\left(444^3\right)^{111}\)
\(\Rightarrow333^4=111^4.3^4=111^3.111.3^4\)
\(444^3=111^3.4^3\)
\(\Rightarrow111.3^4=111.81>4^3=64\)
\(\Rightarrow333^{444}>444^{333}\)
ta có :
\(333^{444}=333^{4.111}=\left(333^4\right)^{111}\)
\(444^{333}=444^{3.111}=\left(444^3\right)^{111}\)
vì hai lũy thừa trên cùng số mũ nên ta so sánh \(333^4\)và \(444^3\)
\(333^4=\left(111.3\right)^4=111^4.3^4=111^4.81\)
\(444^3=\left(111.4\right)^3=111^3.64\)
Vì \(111^4.81>111^3.64\)nên \(333^{444}>444^{333}\)