PB

Hãy nêu định nghĩa của sinα , cosα và giải thích vì sao ta có:

sin(α +k2 π)=sinα;k ∈Z

cos(α +k2 π)=cosα;k ∈Z

CT
23 tháng 1 2019 lúc 11:16

+) Định nghĩa của sin α; cos α

Trên đường tròn lượng giác, xét cung AM có số đo α

Gọi H và K lần lượt là hình chiếu của M trên trục Ox, Oy.

Tung độ y = OK¯ của điểm M được gọi là sin của α : sin α = OK¯

Hoành độ x = OH¯ của điểm M được gọi là cos của α : cos α = OH¯

Trên đường tròn lượng giác trong mặt phẳng Oxy, lấy điểm A (1; 0) làm gốc.

Khi đó các cung có số đo hơn kém nhau một bội của 2π có điểm cuối trùng nhau.

Giả sử cung α có điểm cuối là M(x; y)

Khi đó với mọi k ∈ Z thì cung α + k2π cũng có điểm cuối là M.

Giải bài 1 trang 155 SGK Đại Số 10 | Giải toán lớp 10

sin α = y, sin (α + k2π) = y nên sin(α + k2π) = sinα

cos α = x, cos(α + k2π) = x nên cos(α + k2π) = cosα

Bình luận (0)