Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NN

Hãy chứng minh rằng:Tích của 3 số tự nhiên liên tiếp thì chia hết cho 6

NL
15 tháng 10 2014 lúc 12:18
Gọi a ; a+1 ; a+2 là ba STN liên tíêp chứng minh tích 3 STNLT chia hết cho 6 nghĩa là CM chia hết cho 2 và 3a:số chẵn :  --> a+1 là số lẻ ; a+2 là số chẵn

      --> a.(a+1) là số chẵn --> a(a+1).(a+2) chia hết cho 2

a:số lẻ : --> a+1 là số chẵn ; a+2 là số lẻ 

        --> a.(a+1).(a+2) là số chẵn --> a.(a+1).(a+2) chia hết cho 2

       Vậy tích 3 STNLT thì chi hết cho 2(1)

       1. TRƯỜNG HỢP 1 : a = 3.k

       Ta có : a.(a+1).(a+2) = 3.k.(3.k+1).(3.k+2)chia hết cho 3

       2. TRƯỜNG HỢP 2 : a = 3.k+1

       Ta có : a.(a+1).(a+2) = (3.k+1).(3.k+2).(3.k+3)

                                      = (3.k+1).(3.k+2).3.(k+1) chia hết cho 3

       3.TRƯỜNG HỢP 3 : a = 3.k+2

        Ta có : a.(a+1).(a+2) = (3.k+2).(3.k3).(3.k+4)

                                       = (3.k+2).(3.k+4).3.(k+1) chia hết cho 3

 VẬY TÍCH 3 STNLT THÌ CHIA HẾT CHO 3(2)

  Từ (1).(2) --> tích ba STNLT thì chia hết cho 6

Bình luận (0)
DC
12 tháng 10 2017 lúc 18:09

Mình không có ý kiến về câu trả lời của bạn Nguyễn Vũ Hải Linh

Nhưng mình có góp ý là bạn nên thêm 1 câu là: tích 3 STNLT chia hết cho 3 và 2 mà 3 và 2 là hai số nguyên tốt cùng nhau nên tích 3 STNLT chia hết cho 6 thì hợp lí hơn

Bình luận (0)
H24
28 tháng 10 2017 lúc 20:03

chia het

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
CM
Xem chi tiết
NP
Xem chi tiết
NH
Xem chi tiết
PH
Xem chi tiết
NT
Xem chi tiết
VK
Xem chi tiết
TN
Xem chi tiết
PA
Xem chi tiết