LL

Hàm số y=(2m-1)x+2  có đồ thị là đường thẳng d.
Tìm m để khoảng cách từ gốc tọa độ đến d bằng 1

NH
5 tháng 12 2021 lúc 13:19

Gọi A, B lần lượt là giao điển của \(\left(d\right)\) với 2 trục \(Ox,Oy\)

Ta có : \(A\left(\dfrac{-2}{2m-1},0\right);B\left(0,2\right)\)

Gọi OH là khoảng cách từ \(\left(d\right)\) đến gốc O

Áp dụng hệ thức lượng trong tam giác vuông :

\(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{1}{\left(\dfrac{-2}{2m-1}\right)^2}+\dfrac{1}{2^2}=\dfrac{\left(2m-1\right)^2}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow4=\left(2m-1\right)^2+1\)

\(\Leftrightarrow4=4m^2-4m+1+1\)

\(\Leftrightarrow4m^2-4m-2=0\)

\(\Leftrightarrow2m^2-2m+1=0\)

\(\Leftrightarrow\) Ko tìm đc m

 

Bình luận (0)
NM
5 tháng 12 2021 lúc 13:47

PT giao Ox và Oy:

\(\left\{{}\begin{matrix}y=0\Rightarrow x=\dfrac{2}{1-2m}\Rightarrow A\left(\dfrac{2}{1-2m};0\right)\Rightarrow OA=\dfrac{2}{\left|2m-1\right|}\\x=0\Rightarrow y=2\Rightarrow B\left(0;2\right)\Rightarrow OB=2\end{matrix}\right.\)

Gọi H là chân đường cao từ O đến \(\left(d\right)\Rightarrow OH=1\)

Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OA^2}+\dfrac{1}{OB^2}=\dfrac{\left(2m-1\right)^2}{4}+\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{\left(2m-1\right)^2+1}{4}=1\\ \Leftrightarrow\left(2m-1\right)^2+1=4\\ \Leftrightarrow\left(2m-1\right)^2=3\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1+\sqrt{3}}{2}\\m=\dfrac{1-\sqrt{3}}{2}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
KL
Xem chi tiết
HP
Xem chi tiết
MP
Xem chi tiết
H24
Xem chi tiết
TQ
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết