Đáp án A
Hàm số y = log x − 1 x xác định khi x > 0 x − 1 > 0 x − 1 ≠ 1 ⇔ x > 0 x > 1 x ≠ 2 ⇔ x > 1 x ≠ 2
Đáp án A
Hàm số y = log x − 1 x xác định khi x > 0 x − 1 > 0 x − 1 ≠ 1 ⇔ x > 0 x > 1 x ≠ 2 ⇔ x > 1 x ≠ 2
Cho hàm số y = f x = x 2 + x - 6 x - 2 k h i x > 2 - 2 a x + 1 k h i x ≤ 2 . Xác định a để hàm số liên tục tại x = 2.
A. a = 1
B. a = 1 2
C. a = - 1.
D. a = 2
Hàm số y= f(x) xác định, liên tục trên R và đạo hàm f ' ( x ) = 2 ( x - 1 ) 2 ( 2 x + 6 ) . Khi đó hàm số f(x)
A. Đạt cực đại tại điểm x= 1
B. Đạt cực tiểu tại điểm x= -3
C. Đạt cực đại tại điểm x= -3
D. Đạt cực tiểu tại điểm x= 1
Cho hàm số: f x = x + a khi x < 0 x 2 + 1 khi x ≥ 0 . Xác định a để hàm số liên tục tại x 0 = 0 .
A. a = 0
B. a = 2
C. a = -1
D. a = 1
Cho hàm số f x = x + a khi x < 0 x 2 + 1 khi x ≥ 0 . Xác định a để hàm số liên tục tại x 0 = 0 .
A. a = 0
B. a = 2
C. a = –1
D. a = 1
Cho hàm số f x = x 2 + x − 6 x − 2 k h i x > 2 − 2 a x + 1 k h i x ≤ 2 . Xác định a để hàm số liên tục tại điểm x = 2
A. a = 2
B. a = 1 2
C. a = 1
D. a = − 1
Cho hàm số f x = x 2 + x − 6 x − 2 k h i x > 2 − 2 a x + 1 k h i x ≤ 2 . Xác định a để hàm số liên tục tại điểm x = 2
A. a = 2
B. a = 1 2
C. a = 1
D. a = -1
Cho hàm số f x = x 2 + x − 6 x − 2 khi x > 2 − 2 a x + 1 khi x ≤ 2 . Xác định a để hàm số liên tục tại điểm x = 2
A. a = 1 2
B. a = - 1
C. a = 1
D. a = 2
Cho hàm số y = f x xác định, liên tục và có đạo hàm trên đoạn a , b . Xét các khẳng định sau:
1. Hàm số f x đồng biến trên a ; b thì f ' x > 0 , ∀ x ∈ a ; b
2. Giả sử f a > f c > f b , ∀ x ∈ a ; b suy ra hàm số nghịch biến trên a ; b
3. Giả sử phương trình f ' x = 0 có nghiệm là x = m khi đó nếu hàm số y = f x đồng biến trên m ; b thì hàm số y = f x nghịch biến trên a , m
4. Nếu f ' x ≥ 0 , ∀ x ∈ a ; b , thì hàm số đồng biến trên a ; b
Số khẳng định đúng trong các khẳng định trên là
A. 1
B. 0
C. 3
D. 2
Cho các mệnh đề sau đây:
(1) Hàm số f ( x ) = log 2 2 x - log 2 x 4 + 4 có tập xác định D = [ 0 ; + ∞ )
(2) Hàm số y = log a x có tiệm cận ngang
(3) Hàm số y = log a x ; 0 < a < 1 và Hàm số y = log a x , a > 1 đều đơn điệu trên tập xác định của nó
(4) Bất phương trình: log 1 2 5 - 2 x 2 - 1 ≤ 0 có 1 nghiệm nguyên thỏa mãn.
(5) Đạo hàm của hàm số y = ln 1 - cos x là sin x 1 - cos x 2
Hỏi có bao nhiêu mệnh đề đúng:
A. 0
B. 2
C. 3
D.1
Cho hàm số y = ( x - 2 ) - 1 2 Bạn Toán tìm tập xác định của hàm số bằng cách như sau:
Bước 1: Ta có y = 1 ( x - 2 ) 1 2 = 1 x - 2
Bước 2: Hàm số xác định ⇔ x - 2 > 0 ⇔ x > 2
Bước 3: Vậy tập xác định của hàm số là D = ( 2 ; + ∞ )
Lời giải trên của bạn toán đúng hay sai? Nếu sai thì sai ở bước nào?
A. Bước 3
B. Bước 1
C. Đúng
D. Bước 2