Đáp án B
y ' = − 3 x 2 + 6 x − 3 < 0, ∀ x ∈ R
( Cách khác: Hs kiểm tra trên MTBT bằng chức năng Mode 7 vẫn đc kết quả câu B )
Đáp án B
y ' = − 3 x 2 + 6 x − 3 < 0, ∀ x ∈ R
( Cách khác: Hs kiểm tra trên MTBT bằng chức năng Mode 7 vẫn đc kết quả câu B )
Cho hàm số f(x) có bảng biến thiên như sau:
Hàm số y = ( f ( x ) ) 3 - 3 ( f ( x ) ) 2 nghịch biến trên khoảng nào dưới đây?
A. (2;3).
B. (1;2).
C. (3;4).
D. (-∞;1).
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f' (x) như hình vẽ bên. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
1. Hàm số g(x) có 3 điểm cực trị.
2. Hàm số g(x)đạt cực tiểu tại x = 0.
3. Hàm số g(x)đạt cực đại tại x = 2.
4. Hàm số g(x)đồng biến trên khoảng (-2;0).
5. Hàm số g(x)nghịch biến trên khoảng (-1;1).
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 1.
B. 4.
C. 3.
D. 2.
Cho hàm số f(x) có đồ thị của hàm số y=f'(x) như hình vẽ bên và f(-2)=f(2)=0. Hàm số y = ( f ( 3 - x ) ) 2 nghịch biến trên khoảng nào dưới đây ?
A. (1;2).
B. (-2;-1).
C. ( 5 ; + ∞ ) .
D. (2;5).
Cho hàm số f(x) có f ( 2 ) = f ( - 2 ) = 0 và có bảng xét dấu của đạo hàm như sau:
Hàm số y = ( f ( 3 - x ) ) 2 nghịch biến trên khoảng nào dưới đây?
A. (2;5).
B. (1;+∞).
C. (-2;-1).
D. (1;2).
Cho hàm số y=f(x) có đạo hàm trên R thỏa mãn f(-1)= f(3)= 0 và đồ thị hàm số y=f' (x) có dạng như hình vẽ. Hàm số y= [ f ( x ) ] 2 nghịch biến trên khoảng nào trong các khoảng sau?
A. (-2;1).
B. (1;2).
C. (0;4).
D. (-2;2).
Cho bài toán: “Xét tính đơn điệu của hàm số y = x 2 + 2 x - 3 ” Một bạn học sinh đã làm bài như sau:
Bước 1: Tập xác định: D = ℝ \ ( - 3 ; 1 )
Bước 2: Tìm đạo hàm: y ' = x 2 + 2 x - 3 ' 2 x 2 + 2 x - 3 = x + 1 x 2 + 2 x - 3
Bước 3: y ' = 0 ⇔ x + 1 = 0 x 2 + 2 x - 3 > 0 ⇔ x = 1 x < - 3 ⇔ x ∈ ∅ ; x > 1
Bước 4: Bảng biến thiên:
Bước 5: Kết luận:
Vậy hàm số nghịch biến trên nửa khoảng ( - ∞ ; - 3 ] , đồng biến trên nửa khoảng [ 1 ; + ∞ ) . Hỏi bài làm trên đúng hay
sai? Nếu sai thì sai từ bước nào?
A. Bài làm đúng.
B. Sai từ bước 3.
C. Sai từ bước 4.
D. Sai từ bước 5
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f’(x) và các khẳng định sau:
(1). Hàm số y=f(x) đồng biến trên khoảng 1 ; + ∞
(2). Hàm số y=f(x) nghịch biến trên khoảng - ∞ ; - 2
(3). Hàm số y=f(x) nghịch biến trên khoảng - 2 ; 1 .
(4). Hàm số y = f x 2 đồng biến trên khoảng - 1 ; 0
(5). Hàm số y = f x 2 nghịch biến trên khoảng (1;2)
Số khẳng định đúng là
A. 4
B. 3
C. 2
D. 5
Cho hàm số y = f ( x ) liên tục trên R và có đồ thị hàm số y = f ' ( x ) như hình bên:
Hỏi hàm số g ( x ) = f ( 3 - 2 x ) nghịch biến trên khoảng nào sau đây?
A. (-1;+∞)
B. (-∞;-1)
C. (1;3)
D. (0;2)
Cho hàm số y = f(x) xác định trên ℝ và có đồ thị của hàm số f ' ( x ) , biết f ( 3 ) + f ( 2 ) = f ( 0 ) + f ( 1 ) và các khẳng định sau:
Hàm số y = f(x) có 2 điểm cực trị.
Hàm số y = f(x) đồng biến trên khoảng ( - ∞ ; 0 ) .
Max [ 0 ; 3 ] f ( x ) = f ( 3 ) .
Min ℝ f ( x ) = f ( 2 ) .
Max [ - ∞ ; 2 ] f ( x ) = f ( 0 ) .
Số khẳng định đúng là
A. 2.
B. 3.
C. 4.
C. 4.
Cho hàm số f(x)=3 sinx+2. Gọi S là tập hợp các giá trị nguyên của tham số m để hàm số y = f 3 ( x ) - 3 mf 2 ( x ) + 3 ( m 2 - 4 ) f ( x ) - m nghịch biến trên khoảng (0;π/2). Số tập con của S bằng
A. 1
B. 2.
C. 4.
D. 16.