Bài 5: Giải bài toán bằng cách lập hệ phương trình

HL

Hai tổ cùng làm một công việc trong 15h thì xong, nếu tổ 1 làm trong 3h, tổ 2 làm trong 5h thì được 25% công việc. Hỏi mỗi tổ làm riêng trong bao lâu thì xong công viêc đó?

NT
6 tháng 7 2021 lúc 21:58

Gọi thời gian tổ 1 hoàn thành công việc khi làm một mình là x(giờ)

thời gian tổ 2 hoàn thành công việc khi làm một mình là y(giờ)

(Điều kiện: x>15; y>15)

Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{x}\)(công việc)

Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{y}\)(công việc)

Theo đề, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\)(1)

Vì nếu tổ 1 làm trong 3 giờ và tổ 2 làm trong 5 giờ thì được 25% công việc nên ta có phương trình:

\(\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{1}{4}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\\\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{1}{5}\\\dfrac{3}{x}+\dfrac{5}{y}=\dfrac{1}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-2}{y}=\dfrac{-1}{20}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{15}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=40\\\dfrac{1}{x}=\dfrac{1}{15}-\dfrac{1}{40}=\dfrac{1}{24}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=24\\y=40\end{matrix}\right.\)

Vậy: Tổ 1 cần 24 giờ để hoàn thành công việc khi làm một mình

Tổ 2 cần 40 giờ để hoàn thành công việc khi làm một mình

Bình luận (0)

Các câu hỏi tương tự
HY
Xem chi tiết
MA
Xem chi tiết
NN
Xem chi tiết
PA
Xem chi tiết
MV
Xem chi tiết
VL
Xem chi tiết
TH
Xem chi tiết
XM
Xem chi tiết
XC
Xem chi tiết