PB

Hai tam giác ABC, A'B'C' vuông tại A và A' có AB = A'B', AC > A'C'. Không sử dụng định lý Pitago, chứng minh rằng BC > B'C'

CT
2 tháng 10 2017 lúc 9:17

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Do AC > A'C' nên lấy được điểm C1 trên cạnh AC sao cho AC1=A′C′. Ta có tam giác vuông ABC1 bằng tam giác vuông A'B'C', suy ra B′C′=BC1. Mặt khác hai đường xiên BC và BC1 kẻ từ B đến đường thẳng AC lần lượt có hình chiếu trên AC là AC và AC1. Vì AC > AC1 nên BC > BC1. Suy ra BC > B'C'.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
C2
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
DM
Xem chi tiết
TS
Xem chi tiết
TS
Xem chi tiết
TV
Xem chi tiết
LA
Xem chi tiết