Cho tam giác DEF cân tại D. Gọi I là trung điểm của EF. Kẻ IM vuông góc DE(M thuộc DE), IN vuông góc DF(N thuộc DF). a/ Chứng minh:Tam giác DIE=tam giác DIF, b/Tam giác IMN là tam giác cân, c/C/m:MN//EF, d/2*IN^2=DF^2-DN^2-NF^2
Cho tam giác DEF có DE=6cm; DF= 8cm và EF=10cm. Vẽ tia phân giác góc E cắt cạnh DF tại M.Trên cạnh EF lấy điểm N sao cho:EN=ED.Đường thẳng MN cắt đường thẳng DE tại I.
a,C/m: tam giác DEF là tam giác vuông.
b,C/m: MN vuông góc vs EF.So sánh DM và MF
c,Gọi P.Q lần lượt là trung điểm của DN và IF.C/m:P,M,Q thẳng hàng.
Giúp tớ gấp nha1!
Cho tam giác DEF có DE=6cm; DF= 8cm và EF=10cm. Vẽ tia phân giác góc E cắt cạnh DF tại M.Trên cạnh EF lấy điểm N sao cho:EN=ED.Đường thẳng MN cắt đường thẳng DE tại I.
a,C/m: tam giác DEF là tam giác vuông.
b,C/m: MN vuông góc vs EF.So sánh DM và MF
c,Gọi P.Q lần lượt là trung điểm của DN và IF.C/m:P,M,Q thẳng hàng.
Giúp tớ gấp nha1!
Cho △DEF vuông tại D,kẻ đường phân giác EI của góc E ( I thuộc DF).Đường thẳng đi qua D và vuông góc với EI cắt EF tại M.
a)Chứng minh: ED=EM
b)Chứng minh: △EMI là tam giác vuông
c)So sánh độ dài hai đoạn thẳng DI và IF
d)Vẽ tia Fx song song với DM,Fx cắt EI tại K. Chứng minh rằng 3 đường thẳng DE,FK,IM đồng quy.
Cho tam giác DEF có DE=DF, H là trung điểm của EF.
a) Chứng minh: △DHE = △DHF
b) Kẻ HM vuông góc với DE (M thuộc DE), kẻ HN vuông góc với DF (N thuộc DF). Chứng minh DM = DN.
Cho tam giác DEF có DE=6cm, DF=8cm, EF=10cm. Vẽ tia phân giác của góc E cắt cạnh DF tại M. Trên cạnh EF lấy điểm N sao cho EN=ED. Đường thẳng NM cắt đường thẳng DE tại I.
a) Chứng minh tam giác DEF là tam giác vuông
b) MN vuông góc EF rồi so sánh DM và MF
c) Gọi P, Q lần lượt là trung điểm của DN và IF. Chứng minh 3 điểm P, M, Q thẳng hàng
Cho tam giác DEF cân tại D kẻ DI vg góc vs DF ( I thuộc EF ) chứng minh rằng :
a, IE =IF và góc EDI =góc FDI
b, kẻ IM vg góc vs DE ( M thuộc DE) , IN vuông góc vs DE ( N thuộc DF) chứng minh DM = DN
C, Tam giác IMN là tâm giác gì ? Vì sao?
Cho tam giác DEF cân tại D. Gọi I là trung điểm của EF
a, Chứng minh: Tam giác DIE = Tam giác DIF
b, Kẻ ID vuông góc DE ( M thuộc DE), IN vuông góc DF ( N thuộc DF). Chứng minh Tam giác IMN là tam giác đều
c, Chứng minh MN//EF
d, Chứng minh: 2.IN^2 = DF^2 - DN^2 - NF^2
Giúp mk với!
Cho tam giác DEF vuông tại D và DF > DE, kẻ DH vuông góc với EF (H thuộc EF). Gọi M là trung điểm của EF. Chứng minh
a, Góc MDH = góc E - góc F
b, EF - DE > DF - DH
Cho tam giác DEF cân tại D. Gọi H là trung điểm của EF. a) C/m: t/giác DEH = t/giác DFH và DH vuông góc EF b) Kẻ HM vuông góc DE tại M, HN vuông góc DF tại N. C/m: t/giác HMN cân tại H c) C/m: MN// EF d) Qua E kẻ đường thẳng d vuông góc với DE, qua F kẻ đường thẳng d' vuông góc với DF, đường thẳng d cắt đường thẳng d' tại K. C/m: D, H , K thẳng hàng.