a/ x= \(\sqrt{3}-2\)
b/ ko tồn tại nghiệm số thực
x \(\in\phi\)
a)\(\sqrt{\left(x^2-4x+1\right)}-2=2x\)
\(\Leftrightarrow\sqrt{\left(x^2-4x+1\right)}=2x+2\)
ĐKXĐ : \(2x+2\ge0\Leftrightarrow x\ge-1\)
Bình phương hai vế
\(\Leftrightarrow x^2-4x+1=\left(2x+2\right)^2\)
\(\Leftrightarrow x^2-4x+1=4x^2+8x+4\)
\(\Leftrightarrow4x^2+8x+4-x^2+4x-1=0\)
\(\Leftrightarrow3x^2+12x+3=0\)(*)
\(\Delta=b^2-4ac=\left(12\right)^2-4\cdot3\cdot3=144-36=108\)
\(\Delta>0\)nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-12+\sqrt{108}}{6}=-2+\sqrt{3}=\sqrt{3}-2\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-12-\sqrt{108}}{6}=-2-\sqrt{3}=-\sqrt{3}-2\end{cases}}\)
Đối chiếu với ĐKXĐ ta thấy \(\sqrt{3}-2\)tmđk
Vậy phương trình có nghiệm duy nhất là x = \(\sqrt{3}-2\)
b) \(\sqrt{\left(4-x+2x^2\right)}=x-3\)
ĐKXĐ : \(x-3\ge0\Leftrightarrow x\ge3\)
Bình phương hai vế
\(\Leftrightarrow2x^2-x+4=\left(x-3\right)^2\)
\(\Leftrightarrow2x^2-x+4=x^2-6x+9\)
\(\Leftrightarrow2x^2-x+4-x^2+6x-9=0\)
\(\Leftrightarrow x^2+5x-5=0\)(*)
\(\Delta=b^2-4ac=5^2-4\cdot1\cdot\left(-5\right)=25+20=45\)
\(\Delta>0\)nên (*) có hai nghiệm phân biệt
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-5+\sqrt{45}}{2}\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-5-\sqrt{45}}{2}\end{cases}}\)
Đối chiếu với ĐKXĐ ta thấy hai nghiệm không thỏa mãn
Vậy phương trình vô nghiệm