Tìm x, biết:
a, \(\sqrt{4x+20}-3\sqrt{5+x}+\frac{4}{3}\sqrt{9x+45}=6\)
b, \(\sqrt{25x-25}-\frac{15}{2}\sqrt{\frac{x-1}{9}}=6+\sqrt{x-1}\)
Giải PT sau
\(\sqrt{25x-25}-\dfrac{15}{2}\sqrt{\dfrac{x-1}{9}}=6+\sqrt{x-1}\)
\(\sqrt{15x-25}-\frac{15}{2}\sqrt{\frac{x-1}{9}}=6+\sqrt{x-1}\)
GPT
a) \(\sqrt{x}+\sqrt{x+1}=\frac{1}{\sqrt{x}}\)
b) \(\frac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}=\sqrt{2}\)
A)\(\sqrt{25x-25}\)-\(\dfrac{15}{2}\)\(\sqrt{\dfrac{x-1}{9}}\)=6+\(\sqrt{x-1}\)
B) A=\(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}\)+\(\dfrac{x\sqrt{x}}{\sqrt{x}+1}\)
a) Đặt điều kiện để biểu thức có nghĩa A
b) Rút gọn biểu thức A
tìm x biết
a)\(\frac{3\sqrt{x}-5}{2}-\frac{2\sqrt{x}-7}{3}+1=\sqrt{x}\)
b)\(\sqrt{9x^2+45}-\frac{1}{12}\sqrt{16x^2+80}+3\sqrt{\frac{x^2+5}{16}}-\frac{1}{4}\sqrt{\frac{25x^2+125}{9}}=9\)
Giải pt
6) \(\sqrt{x^2-4x+1}=x\)
8) \(\sqrt{x^2-x-6}=\sqrt{x-3}\)
9) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\)
\(\frac{1}{4}\sqrt{\frac{25x^2+125}{9}}\)Tìm x biết
a) \(\frac{3\sqrt{x}-5}{2}\)- \(\frac{2\sqrt{x}-7}{3}\)+1=20
b) \(\sqrt{9x^2+45}\) - \(\frac{1}{12}\sqrt{16x^2+80}\) +\(3\sqrt{\frac{x^2+5}{16}}\)
-\(\frac{1}{4}\sqrt{\frac{25x^2+125}{9}}\)=9
GPT
a) \(\sqrt{5x}-\sqrt{20x}+\sqrt{180x}-15=0\)
b) \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}=-17}\)
c)\(x-7\sqrt{x-3}+9=0\)
d) \(-5x+7\sqrt{x}+12=0\)