\(\sin\left(x-\dfrac{\pi}{2}\right)=1\Leftrightarrow x-\dfrac{\pi}{2}=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\pi+k2\pi\left(k\in Z\right)\)
\(\sin\left(x-\dfrac{\pi}{2}\right)=1\Leftrightarrow x-\dfrac{\pi}{2}=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\pi+k2\pi\left(k\in Z\right)\)
GPT: \(\sin\left(5x+\dfrac{\pi}{6}\right)=\sin\left(x-\dfrac{\pi}{3}\right)\)
GPT: \(\sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{\pi}{2}\)
GPT: \(\sin\left(x-\dfrac{\pi}{3}\right)=1\)
GPT: \(\sin\left(2x+\dfrac{\pi}{4}\right)=-\dfrac{1}{2}\)
\(GPT:\) \(\sin\left(x+\dfrac{\pi}{3}\right)=0\)
GPT: \(2\sin\left(2x+\dfrac{\pi}{4}\right)=\sqrt{2}\)
chứng minh đẳng thức lượng giác
a) \(\dfrac{1-cos^2\left(\dfrac{\pi}{2}-x\right)}{1-sin^2\left(\dfrac{\pi}{2}-x\right)}\) - cot\(\left(\dfrac{\pi}{2}-x\right)\) . tan\(\left(\dfrac{\pi}{2}-x\right)\) = \(\dfrac{1}{sin^2x}\)
b) \(\left(\dfrac{1}{cos2x}+1\right)\).tan\(x\) = \(tan2x\)
chứng minh đẳng thức lượng giác
a) \(\dfrac{1-cos^2\left(\dfrac{\pi}{2}-x\right)}{1-sin^2\left(\dfrac{\pi}{2}-x\right)}\)- cot\(\left(\dfrac{\pi}{2}-x\right)\).tan\(\left(\dfrac{\pi}{2}-x\right)\)= \(\dfrac{1}{sin^2x}\)
b) \(\left(\dfrac{1}{cos2x}+1\right)\).tan\(x\) = tan\(2x\)
Rút gọn biểu thức: