Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

NL

GPT: \(\frac{4x}{x^2+x+3}+\frac{5x}{x^2-5x+3}=-\frac{3}{2}\)

KN
29 tháng 7 2020 lúc 15:26

\(ĐKXĐ:x\ne\frac{5-\sqrt{13}}{2};x\ne\frac{5+\sqrt{13}}{2}\)

\(\frac{4x}{x^2+x+3}+\frac{5x}{x^2-5x+3}=-\frac{3}{2}\)

*) Xét x = 0 thì \(\frac{4x}{x^2+x+3}+\frac{5x}{x^2-5x+3}=0\)(Loại)

*) Xét \(x\ne0\)thì phương trình tương đương \(\frac{4}{x+\frac{3}{x}+1}+\frac{5}{x+\frac{3}{x}-5}=-\frac{3}{2}\)

Đặt \(x+\frac{3}{x}=t\)thì phương trình trở thành \(\frac{4}{t+1}+\frac{5}{t-5}=-\frac{3}{2}\)

\(\Leftrightarrow\frac{4t-20+5t+5}{\left(t+1\right)\left(t-5\right)}=-\frac{3}{2}\Leftrightarrow\frac{9t-15}{t^2-4t-5}=-\frac{3}{2}\)

\(\Leftrightarrow18t-30=-3t^2+12t+15\Leftrightarrow3t^2+6t-45=0\)

\(\Leftrightarrow3\left(t-3\right)\left(t+5\right)=0\Leftrightarrow\orbr{\begin{cases}t=3\\t=-5\end{cases}}\)

+) t = 3 thì \(x+\frac{3}{x}=3\Leftrightarrow\frac{x^2+3}{x}=3\Leftrightarrow x^2-3x+3=0\)

Mà \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}>0\forall x\)nên loại trường hợp t = 3

+) t = -5 thì \(x+\frac{3}{x}=-5\Leftrightarrow\frac{x^2+3}{x}=-5\Leftrightarrow x^2+5x+3=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-5+\sqrt{13}}{2}\\x=\frac{-5-\sqrt{13}}{2}\end{cases}}\)

Vậy phương trình có 2 nghiệm \(\left\{\frac{-5+\sqrt{13}}{2};\frac{-5-\sqrt{13}}{2}\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
ND
29 tháng 7 2020 lúc 15:28

Bài làm:

đkxđ: \(x\ne\left\{\frac{5+\sqrt{13}}{2};\frac{5-\sqrt{13}}{2}\right\}\)

+ Nếu x = 0:

\(Pt\Leftrightarrow0=-\frac{3}{2}\)(vô nghiệm)

+ Nếu x khác 0:

\(Pt\Leftrightarrow\frac{4x}{x\left(x+\frac{3}{x}+1\right)}+\frac{5x}{x\left(x+\frac{3}{x}-5\right)}=-\frac{3}{2}\)

\(\Leftrightarrow\frac{4}{x+\frac{3}{x}+1}+\frac{5}{x+\frac{3}{x}-5}=-\frac{3}{2}\)

Đặt \(x+\frac{3}{x}=y\)

\(Pt\Leftrightarrow\frac{4}{y+1}+\frac{5}{y-5}=-\frac{3}{2}\)

\(\Leftrightarrow\frac{8\left(y-5\right)+10\left(y+1\right)}{2\left(y+1\right)\left(y-5\right)}=-\frac{3\left(y-5\right)\left(y+1\right)}{2\left(y+1\right)\left(y-5\right)}\)

\(\Rightarrow8y-40+10y+10=-3\left(y^2-4y-5\right)\)

\(\Leftrightarrow18y-30=-3y^2+12y+15\)

\(\Leftrightarrow3y^2+6y-45=0\)

\(\Leftrightarrow y^2+2y-15=0\)

\(\Leftrightarrow\left(y-3\right)\left(y+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y-3=0\\y+5=0\end{cases}}\Leftrightarrow\Leftrightarrow\orbr{\begin{cases}y=3\\y=-5\end{cases}}\)

Nếu: \(y=3\Leftrightarrow x+\frac{3}{x}=3\Leftrightarrow\frac{x^2+3}{x}=3\Leftrightarrow x^2+3=3x\)

\(\Leftrightarrow x^2-3x+3=0\)

\(\Leftrightarrow\left(x^2-3x+\frac{9}{4}\right)+\frac{3}{4}=0\)

\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=-\frac{3}{4}\)(vô lý)

=> không tồn tại x thỏa mãn

Nếu: \(y=-5\Leftrightarrow x+\frac{3}{x}=-5\Leftrightarrow\frac{x^2+3}{x}=-5\Leftrightarrow x^2+3=-5x\)

\(\Leftrightarrow x^2+5x+3=0\)

\(\Leftrightarrow\left(x^2+5x+\frac{25}{4}\right)-\frac{13}{4}=0\)

\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2-\left(\frac{\sqrt{13}}{2}\right)^2=0\)

\(\Leftrightarrow\left(x+\frac{5}{2}-\frac{\sqrt{13}}{2}\right)\left(x+\frac{5}{2}+\frac{\sqrt{13}}{2}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{5-\sqrt{13}}{2}=0\\x+\frac{5+\sqrt{13}}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{13}-5}{2}\\x=\frac{-5-\sqrt{13}}{2}\end{cases}}\)(thỏa mãn)

Vậy tập nghiệm của PT \(S=\left\{\frac{-5-\sqrt{13}}{2};\frac{\sqrt{13}-5}{2}\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
HH
Xem chi tiết
HP
Xem chi tiết
HH
Xem chi tiết
LD
Xem chi tiết
gh
Xem chi tiết
PB
Xem chi tiết
TD
Xem chi tiết
H2
Xem chi tiết
NT
Xem chi tiết