Đáp án D
z 2 − z + 2 = 0 ⇔ z = 1 ± i 23 6 ⇒ z 1 = z 2 = 2 3
Khi đó z 1 2 + z 2 2 = 4 3
Đáp án D
z 2 − z + 2 = 0 ⇔ z = 1 ± i 23 6 ⇒ z 1 = z 2 = 2 3
Khi đó z 1 2 + z 2 2 = 4 3
Số nghiệm phức của phương trình z + 2 | z | + 3 - i = ( 4 + i ) | z | z là
A. 1.
B. 2.
C. 3.
D. 4.
Gọi z 1 , z 2 là hai nghiệm phức của phương trình 3 z 2 - z + 2 = 0 . Tính | z 1 | 2 + | z 2 | 2
A. -11/9
B. 8/3
C. 2/3
D. 4/3
gọi z1, z2 là hai nghiêm cảu phương trình z2-4Z+9=0 ; M,N lần lượt là các điểm biểu diễn z1 z2 trên mặt số phức . tính độ dài đoạn thửng M,N
Gọi z 1 , z 2 là hai nghiệm phức của phương trình 3 z 2 - z + 2 = 0 . Tính z 1 2 + z 2 2
A. 8/3
B. 2/3
C. 4/3
D. -11/9
Kí hiệu z 1 , z 2 là hai nghiệm phức của phương trình z = 2 + 2 i Gọi M,N là các điểm biểu diễn của các số phức z 1 , z 2 Tính z = 2 + 2 i với O là gốc toạ độ.
A. T = 2 2 .
B. T = 2 2
C. T = 2 2 .
D. T = 2 2
Nghiệm phức có phần ảo dương của phương trình z2 – z +1 = 0 là z = a + bi, a,b ∈ R. Tính a+ 3 b
A. 2
B. 1
C. –2
D. –1
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆ là giao tuyến của hai mặt phẳng P : z - 1 = 0 và Q : x + y + z - 3 = 0 . Gọi d là đường thẳng nằm trong mặt phẳng P , cắt đường thẳng x - 1 1 = y - 2 - 1 = z - 3 - 1 và vuông góc với đường thẳng . Phương trình của đường thẳng d là
A. x = 3 + t y = t z = 1 + t
B. x = 3 - t y = t z = 1
C. x = 3 + t y = t z = 1
D. x = 3 + t y = - t z = 1 + t
Cho các mệnh đề sau:
1) d : 2 x + y - z - 3 = 0 x + y + z - 1 = 0 phương trình tham số có dạng: x = 2 t y = 2 - 3 t z = t - 1
2) d : x + y - 1 = 0 4 y + z + 1 = 0 có phương trình chính tắc là d : x - 1 1 = y z = z + 1 4
3) Phương trình chính tắc của đường thẳng (d) đi qua điểm A(2,0,-3) và vuông góc với mặt phẳng P : 2 x - 3 y + 5 z - 4 = 0 là d : x - 2 2 = y - 3 = z + 3 5
Hỏi bao nhiêu mệnh đề đúng.
A.1
B. 3
C. 2
D. 0
Cho số phức z thỏa mãn ( 2 − 3 i ) z + ( 4 + i ) z ¯ + ( 1 + 3 i ) 2 = 0 . Gọi a, b lần lượt là phần thực và phần ảo của số phức z. Khi đó 2 a - 3 b bằng
A. 1
B. 4
C. 11
D. -19