PB

Gọi (P) là mặt phẳng đi qua điểm M 9 ; 14 ,  cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho biểu thức O A + O B + O C  có giá trị nhỏ nhất. Mặt phẳng (P) đi qua điểm nào dưới đây?

A.  0 ; 9 ; 0 .

B.  6 ; 0 ; 0 .

C.  0 ; 0 ; 6 .

D.  0 ; 6 ; 0 .

CT
7 tháng 6 2019 lúc 14:51

Đáp án D.

Do (P) cắt Ox; Oy; Oz lần luợt tại A,B, C.

Gọi A a ; 0 ; 0 ; B 0 ; b ; 0 ; C 0 ; 0 ; c   a ; b ; c > 0

Khi đó

A B C : x a + y b + z c = 1 ;   O A + O B + O C = a + b + c

(P) qua M 9 ; 1 ; 4 ⇒ 9 a + 1 b + 4 c = 1

Áp dụng BĐT: x + y + z a 2 x + b 2 y + c 2 z ≥ a + b + c 2

ta có: a + b + c 9 a + 1 b + 4 c ≥ 3 + 1 + 2 2 = 36

Do đó  O A + O B + O C = a + b + c ≥ 36

Dấu bằng xảy ra

⇔ 9 a 2 = 1 b 2 = 4 c 2 9 a + 1 b + 4 c = 1 ⇔ a = 18 ; b = 6 ; c = 12 ⇒ A B C : x 18 + y 6 + z 12 = 1.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết