Chương II : Tam giác

RC

Gọi M là trung điểm của BC của \(\Delta ABC\). Kẻ \(BH\perp AM,CK\perp AM\). Chứng minh rằng:
a/ BH // CK.
b/ M là trung điểm của HK.
c/ HC // BK.

HA
11 tháng 9 2017 lúc 12:11

Hỏi đáp Toán

a) Ta có: \(\left\{{}\begin{matrix}BH\perp AM\\CK\perp AM\end{matrix}\right.\Rightarrow BH\) // CK

b) Xét \(\Delta BHM\) vuông tại H và \(\Delta CKM\) vuông tại K có:

BM = CM (suy từ gt)

\(\widehat{BMH}=\widehat{CMK}\left(đ^2\right)\)

\(\Rightarrow\Delta BHM=\Delta CKM\left(ch-gn\right)\)

\(\Rightarrow HM=KM\)

\(\RightarrowĐPCM.\)

c) Xét \(\Delta CHM;\Delta BKM:\)

BM = CM

\(\widehat{CMH}=\widehat{BMK}\left(đđ\right)\)

HM = KM (câu b)

=> ...

=> \(\widehat{CHM}=\widehat{BKM}\)

mà 2 góc ở vị trí so le trog nên HC // BK.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
QP
Xem chi tiết
DB
Xem chi tiết
H24
Xem chi tiết
ES
Xem chi tiết
VV
Xem chi tiết
NT
Xem chi tiết
TA
Xem chi tiết
NN
Xem chi tiết