PB

Gọi M là điểm có hoành độ khác 0, thuộc đồ thị (C) của hàm số y = x 3 - 3 x .  Tiếp tuyến của (C) tại M cắt (C) tại điểm thứ hai là N (N không trùng với M). Kí hiệu x M , x N  thứ tự là hoành độ của M và N. Kết luận nào sau đây là đúng?

A.  2 x M + x N = 0

B.  x M + 2 x N = 3

C.  x M + x N = - 2

D.  x M + x N = 3

CT
12 tháng 11 2018 lúc 18:28

Đáp án A

Gọi M x 0 ; y 0 ∈ C ⇒ y ' x 0 = 3 x 0 2 - 3 và y x 0 = x 0 3 - 3 x 0 .  

Suy ra phương trình tiếp tuyến của (C) tại M là y = y x 0 = y ' x 0 . x - x 0 .  

⇔ y = 3 x 0 2 - 3 . x - x 0 + x 0 3 - 3 x 0 = 3 x 0 2 - 3 . x - 2 x 0 3   ( d ) .  

Phương trình hoành độ giao điểm của (C) và (d) là x 3 - 3 x = 3 x 0 2 - 3 x - 2 x 0 3  

⇔ x 3 - 3 x 0 2 . x + 2 x 0 3 = 0 ⇔ x - x 0 2 x + 2 x 0 = 0 ⇔ [ x = x 0 x = - 2 x 0 .  

Vậy x M = x 0 x N = - 2 x 0 ⇒ 2 x M + x N = 0 .

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
NH
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết