a) A thuộc { abc, acb, bac, bca, cab, cba }
b) Với 0<a<b<c thì hai chữ số nhỏ nhất trong tập hợp A là abc và acb
Ta có abc+acb=499
Theo đề bài ta có: (100a+10b+c) + (100a+10c+b) = 499
(100a+100a) + (10b+b) + (10c+c) = 499
200a + 11b + 11c = 499
200a + 11(b+c) = 499
499 : 200 = a [(dư 11(b+c)] \(\Leftrightarrow\)499 : 200 = 2 (dư 99)
\(\Rightarrow\)a =2
\(\Rightarrow\)11(b+c) = 99 \(\Rightarrow\)b+c = 9
Do 0<a<b<c nên 0<2<b<c. Mà b+c =9 \(\Rightarrow\)b=3 hoặc 4, c=6 hoặc 5
Vậy:
+) a+b+c=2+3+6=11
+) a+b+c=2+4+5=11