ta có A+B+C=x2yz+xy2z+xyz2
=x(xyz)+y(xyz)+z(xyz)
=x.1+y.1+z.1
=x+y+z(dpcm)
\(A=x^2yz=x.\left(xyz\right)=x.1=x\)
\(B=xy^2z=y.\left(xyz\right)=y.1=y\)
\(C=xyz^2=z.\left(xyz\right)=z.1=z\)
\(\Rightarrow A+B+C=x+y+z\)
Ta có \(A+B+C=x^2yz+xy^2z+xyz^2\)
\(A+B+C=\left(xyz\right)x+\left(xyz\right)y+\left(xyz\right)z\)
\(A+B+C=\left(x+y+z\right)xyz\)
Mà xyz=1 thay vào A+B+C ta có
\(A+B+C=x+y+z\) (đpcm)