NT

Giúp mk vs mai mk phải nộp r

TH
6 tháng 2 2022 lúc 20:45

-Hình vẽ:

undefined

a) -Xét △ABC có:

AM là trung tuyến (gt).

BN là trung tuyến (gt).

G là giao của AM và BN (gt)

=>G là trọng tâm của △ABC.

=>\(BG=\dfrac{2}{3}BN\)(1) (t/c trọng tâm).

\(CG=\dfrac{2}{3}CP\) (2) (t/c trọng tâm).

\(AG=\dfrac{2}{3}AM=2GM\) (t/c trọng tâm).

Mà \(GQ=2GM\) (M là trung điểm GQ).

=>\(GQ=AG=\dfrac{2}{3}AM\) (3).

-Từ (1),(2),(3) suy ra: Độ dài các đường trung tuyến của △BGQ bằng \(\dfrac{1}{2}\) độ dài các cạnh tương ứng của △ABC.

b) -Xét △BMQ và △CMG ta có:

\(BM=CM\) (M là trung điểm của BC).

\(\widehat{BMQ}=\widehat{CMG}\) (đối đỉnh).

\(MQ=MG\) (M là trung điểm GQ)

=>△BMQ = △CMG (c-g-c).

=>\(BQ=CG\) (2 cạnh tương ứng).

-Ta có: \(BC< BG+CG\) (bất đẳng thức trong △BGC).

=>\(BC< BG+BQ\) (\(BQ=CG\))

=>\(\dfrac{1}{2}BC< \dfrac{1}{2}\left(BG+BQ\right)\)

Mà \(BM=\dfrac{1}{2}BC\) (M là trung điểm BC).

=>\(BM< \dfrac{1}{2}\left(BG+BQ\right)\).

c) -Ta có: \(BG=2GN\) (G là trọng tâm của △ABC).

Mà \(BG=2IG\) (I là trung điểm của BG).

=>\(GN=IG\).

-Xét △IQG và △NAG có:

\(IG=NG\) (cmt).

\(\widehat{IGQ}=\widehat{NQA}\) (đối đỉnh).

\(QG=AG\) (cmt).

=>△IQG = △NAG (c-g-c).

=>\(IQ=AN\) (2 cạnh tương ứng) mà \(AN=\dfrac{1}{2}AC\) (N là trung điểm AC).

=>\(IQ=\dfrac{1}{2}AC\) (4).

-Ta có: \(CG=2GP\) (G là trọng tâm của △ABC).

Mà \(BQ=2BK\) (K là trung điểm BQ) và \(BQ=CG\) (cmt).

=>\(GP=BK\).

-Ta có: \(\widehat{BQM}=\widehat{CGM}\)(△BMQ = △CMG).

Mà 2 góc này ở vị trí so le trong.

=>BQ//CG.

-Xét △GBK và △BGP có: 
\(BK=GP\left(cmt\right)\)

\(\widehat{KBG}=\widehat{PGB}\) (BK//PQ và so le trong).

\(BG\) là cạnh chung.

=>△GBK = △BGP (c-g-c).

=>\(GK=BP\) (2 cạnh tương ứng) mà \(BP=\dfrac{1}{2}AB\) (P là trung điểm AB).

=>\(GK=\dfrac{1}{2}AB\) (2).

-Từ (1) và (2) và \(BM=\dfrac{1}{2}BC\) (M là trung điểm BC) suy ra:

Độ dài các đường trung tuyến của △BGP bằng \(\dfrac{1}{2}\) độ dài các cạnh tương ứng của △ABC.

 

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
DM
Xem chi tiết
NT
Xem chi tiết
PT
Xem chi tiết
NT
Xem chi tiết
VH
Xem chi tiết
KN
Xem chi tiết
NT
Xem chi tiết
TX
Xem chi tiết