Ta có: M = 1 + 3 + 32 + 33 + ... + 325
=> 3M = 3(1 + 3 +32 + 33 + ... + 325)
=> 3M = 3 + 32 + 33 + ... + 325 + 326
=> 3M - M = (3 + 32 + 33 + ... + 326) - (1 + 3 + 32 + 33 + ... + 325)
=> 2M = 326 - 1
=> M = \(\frac{3^{26}-1}{2}\)
^ là mũ nha
M=1+3+3^2+3^3+....+3^25
3M=3+3^2+3^3+3^4+...+3^26
=>2M=3M-M=3^26-1
=>M=2M:2=(3^26-1):2
Vậy M=(3^26-1):2
M=1+3+32+33+......+325
3M=3(1+3+32+33+......+325)
3M=3+32+33+......+325+326
3M-M=(3+32+33+......+325+326) - (1+3+32+33+......+325)
Suy ra:M= (326 - 1) : 2
Đặt \(A=1+3+3^2+...+3^{25}\)
\(\Rightarrow3A=3+3^2+3^3+..+3^{26}\)
\(\Rightarrow2A=3^{26}-1\)
\(\Rightarrow A=\frac{3^{26}-1}{2}\)
\(M=1+3+3^2+3^3+...+3^{25}\)
\(\Rightarrow3M=3+3^2+3^3+3^4+...+3^{26}\)
\(\Rightarrow3M-M=\left(3+3^2+...+3^{26}\right)-\left(1+3+...+3^{25}\right)\)
\(\Rightarrow2M=3^{26}-1\Rightarrow M=\frac{3^{26}-1}{2}\)