LT

giúp mk với mn 

1) 

Tính: A  = \(\dfrac{2}{1.2}\) + \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + ...... + \(\dfrac{2}{2023.2024}\)

2)

a) Tìm số nguyên n sao cho: \(\dfrac{n}{n+2}\) + \(\dfrac{5}{n+2}\) là số nguyên

b) Tính tổng: S = \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\) + .... + \(\dfrac{1}{2023.2025}\)

mk cảm ơn

H24
9 tháng 5 2024 lúc 20:35

1)\(A=\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{2023.2024}\)
\(=2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2023.2024}\right)\)
\(=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\right)\)
\(=2\left(1-\dfrac{1}{2024}\right)\)
\(=2\cdot\dfrac{2023}{2024}=\dfrac{2023}{1012}\)
2)
a/\(\dfrac{n}{n+2}+\dfrac{5}{n+2}=\dfrac{n+5}{n+2}=\dfrac{\left(n+2\right)+3}{n+2}=1+\dfrac{3}{n+2}\)
Để \(\dfrac{n}{n+2}+\dfrac{5}{n+2}\) là số nguyên thì \(n+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng sau:

\(n+2\)\(-3\)\(-1\)\(1\)\(3\)
\(n\)\(-5\)\(-3\)\(-1\)\(1\)

Vậy để \(\dfrac{n}{n+2}+\dfrac{5}{n+2}\) nguyên thì \(n\in\left\{-5;-3;-1;1\right\}\)
b/\(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2023.2025}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2023.2025}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2023}-\dfrac{1}{2025}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{2025}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2024}{2025}=\dfrac{1012}{2025}\)
 

Bình luận (0)
CH
9 tháng 5 2024 lúc 20:31

1) \(A=\dfrac{2}{1.2}+\dfrac{2}{2.3}+...+\dfrac{2}{2023.2024}\)

   \(A=2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{2023.2024}\right)\\ A=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2023}-\dfrac{1}{2024}\right)\\ A=2\left(1-\dfrac{1}{2024}\right)\\ A=2\cdot\dfrac{2023}{2024}=\dfrac{2023}{1012}\)

 

Bình luận (0)
CH
9 tháng 5 2024 lúc 20:41

2)

a) \(\dfrac{n}{n+2}+\dfrac{5}{n+2}là\text{ }số\text{ }nguyên\text{ }khi\text{ }\dfrac{n+5}{n+2}là\text{ }sốn\text{ }nguyên\)

\(\dfrac{n+5}{n+2}là\text{ }số\text{ }nguyên\text{ }khi\text{ }n+5⋮n+2\)

\(n+5⋮n+2\\ \Leftrightarrow n+2+3⋮n+2\\ \Rightarrow3⋮n+2\left(vì\text{ }n+2⋮n+2\right)\\ \Rightarrow n+2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\\ \Rightarrow n\in\left\{-1;-3;1;-5\right\}\)

Vậy ...

b) \(S=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{2023.2025}\right)\\ S=\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2023}-\dfrac{1}{1-2025}\right)\\ S=\dfrac{1}{2}\left(1-\dfrac{1}{2025}\right)\\ S=\dfrac{1}{2}\cdot\dfrac{2024}{2025}=\dfrac{1012}{2025}\)

Vậy ... 

Bình luận (0)

Các câu hỏi tương tự
PP
Xem chi tiết
MN
Xem chi tiết
NL
Xem chi tiết
AG
Xem chi tiết
LL
Xem chi tiết
QP
Xem chi tiết
NA
Xem chi tiết
NV
Xem chi tiết
TN
Xem chi tiết
NM
Xem chi tiết