HN

Giúp mk với!!!!!!!! Help me! @_@

Chứng minh rằng : x^5 + y^5 ≥ x^4y + xy^4 với x, y ≠ 0 và x + y ≥ 0

Giải giùm mk xog thì kết bạn nha ai nhanh mk sẽ tick cho!^^

LC
30 tháng 4 2016 lúc 10:00

Đề thế này phải ko bạn: 

Chứng minh rằng: \(x^5+y^5\ge x^4.y+x.y^4\)với \(x,y\ne0\)\(x+y\ge0\)

Bình luận (0)
LC
30 tháng 4 2016 lúc 9:58

bạn vào fx viết lại đề đi nha, sai đề rùi

Bình luận (0)
LC
30 tháng 4 2016 lúc 10:09

Ta có: \(x^5+y^5\ge x^4.y+x.y^4\)(1)

<=>\(x^5+y^5-x^4.y-x.y^4\ge0\)

<=>\(\left(x^5-x^4.y\right)-\left(x.y^4-y^5\right)\ge0\)

<=>\(x^4.\left(x-y\right)-y^4.\left(x-y\right)\ge0\)

<=>\(\left(x^4-y^4\right).\left(x-y\right)\ge0\)

<=>\(\left[\left(x^2\right)^2-\left(y^2\right)^2\right].\left(x-y\right)\ge0\)

<=>\(\left(x^2+y^2\right).\left(x^2-y^2\right).\left(x-y\right)\ge0\)

<=>\(\left(x^2+y^2\right).\left(x+y\right).\left(x-y\right).\left(x-y\right)\ge0\)

<=>\(\left(x^2+y^2\right).\left(x+y\right).\left(x-y\right)^2\ge0\)

Vì \(x^2+y^2\ge0,\left(x-y\right)^2\ge0\)

=>(1)<=>\(x+y\ge0\)(2)

Vì \(x+y\ge0\)(theo giả thiết)

=>(2) đúng với mọi x,y

Vì các dấu"<=>" có giá trị như nhau

=>(1) đúng với mọi x,y

=>ĐPCM

Bình luận (0)
DL
4 tháng 3 2022 lúc 13:50

khó dể sợ huuhu

Bình luận (0)
 Khách vãng lai đã xóa
DK
4 tháng 3 2022 lúc 14:16

Có ai biết đâu!

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
CT
Xem chi tiết
LN
Xem chi tiết
YS
Xem chi tiết
DV
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết
ST
Xem chi tiết
H24
Xem chi tiết
TK
Xem chi tiết