\(A=\frac{\left(m+1\right)^2+m}{\left(m+1\right)^2}=1+\frac{m}{\left(m+1\right)^2}\)
mới lớp 7, chưa học dạng này, giúp đến đây là cùng
Nếu là giá trị lớn nhất thì sẽ làm được đấy!
\(A=\frac{\left(m+1\right)^2+m}{\left(m+1\right)^2}=1+\frac{m}{\left(m+1\right)^2}\)
mới lớp 7, chưa học dạng này, giúp đến đây là cùng
Nếu là giá trị lớn nhất thì sẽ làm được đấy!
cho biểu thức \(M=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right).\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
a) rút gọn biểu thức
b) tìm giá trị nhỏ nhất của M
làm ơn giúp mình với
Cho biểu thức: \(M=\left(\frac{\left(a-1\right)^2}{31+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right):\frac{a^3+4a}{4a^2}\)
a) Rút gọn M
b) Tìm a để M > 0
c) Tìm giá trị của a để biểu thức M đạt giá trị lớn nhất. Tìm giá trị nhỏ nhất đó
Xét biểu thức A=\(\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\\ \)
a) Rút gọn M
b)Tìm x để M đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
Tìm giá trị của x để biểu thức M=\(\left(2x+5\right)^2+2x\left(3x-4\right)-\left(x^2+22\right)\) đạt giá trị nhỏ nhất và giá trị nhỏ nhất bằng bao nhiêu?
Các bạn giúp mình với
Cho biểu thức M=\(\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]\) \(:\frac{a^3+4a}{4a^2}\)
a) Rút gọn M
b) tìm a để M=0
c) Tìm a để M đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó
Cho biểu thức\(M=\left(\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right):\frac{a^3+4a}{4a^2}\)
Rút gọn MTìm giá trị của a để M đạt giá trị lớn nhấtCho a,b>0 và a+b=1.Tìm giá trị nhỏ nhất của: \(M=\left(1+\frac{1}{a}\right)^2+\left(1+\frac{1}{b}^2\right)\)
giúp mình với nhanh nha, mai nộp rồi!!!
1. Tính giá trị của biểu thức:
\(A=\left(\frac{m-n}{p}+\frac{n-p}{m}+\frac{p-m}{n}\right)\left(\frac{p}{m-n}+\frac{m}{n-p}+\frac{n}{p-m}\right)\)
biết \(m+n+p=0\)
2. Tính:
a) \(A=\frac{2^3+1}{2^3-1}.\frac{3^3+1}{3^3-1}.\frac{4^3+1}{4^3-1}...\frac{10^3+1}{10^3-1}\)
b) \(B=\frac{\left(1+\frac{1}{4}\right)\left(3^4+\frac{1}{4}\right)\left(5^4+\frac{1}{4}\right)...\left(9^4+\frac{1}{4}\right)}{\left(2^4+\frac{1}{4}\right)\left(4^4+\frac{1}{4}\right)\left(6^4+\frac{1}{4}\right)...\left(10^4+\frac{1}{4}\right)}\)
1. Giá trị nhỏ nhất của \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\) với a, b, c là số dương
2. Giá trị nhỏ nhất của \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)