giai pt:
a) \(\left(2cosx-1\right)\left(2sinx+cosx\right)=sin2x-sinx\)
b) \(\frac{sin2x}{cosx}+\frac{cos2x}{sinx}=tanx-cotx\)
c) \(\frac{1}{cos^2x}=\frac{2-sin^3x-cos^2x}{1-sin^3x}\)
giai pt
a) \(\sqrt{3}cosx-sinx=2sin4x\)
b) \(sin2x+4sinx.cos^2x=2sinx\)
c) \(sin7x-sinx=1-2sin^22x\)
d) \(\frac{2sinx+cosx+1}{sinx-2cosx+3}=\frac{1}{3}\)
tìm GTLN,GTNN của hàm số
a/ y= sin2x + (\(\sqrt{3}\) +1) cos2x +sin4 x -cos4x -1
b/ (sinx -2cosx)(2sinx+cosx)-1
c/ y= (Sinx-cosx)2+2cos2x+3sinxcosx
giúp em giải chi tiết với ạ
tìm tập xác định của hàm số
1.y=\(cot\left(\dfrac{\pi}{3}-x\right)\)
2.y=\(\dfrac{tan2x-1}{\sqrt{1+sinx}+1}\)
3.y=\(\sqrt{\sqrt{1+sinx}-\sqrt{2}}\)
4.y=\(\dfrac{3cos4x-3}{\sqrt{2-2cosx}-2}\)
5.y=\(\dfrac{1-cot3x}{1-\sqrt{1+sin3x}}\)
6.y=\(cot2x+cotx\)
giai pt:
a) \(4sin^5x.cosx-4cos^5x.sinx=sin^24x\)
b) \(4sin^2\frac{x}{2}-\sqrt{3}cos2x=1+2cos^2\left(x-\frac{3\pi}{4}\right)\)
c) \(sin^2\left(x+\frac{\pi}{3}\right)+sinx+\sqrt{3}cosx=\frac{5}{4}\)
d) \(2sinx\left(1+cos2x\right)+sin2x=1+2cosx\)
e) \(sin^2x+4sinx.cosx+3cos^2x-sinx-3ccosx=0\)
Giải pt
1. cos3x+ sin3x- sin6x =0
2. Sinx- 2cos^2(x/2)+sin2x= -2
Tìm tập xác định của hàm số :
1.y=\(\frac{1}{sinx-cosx}\)
2.y=\(\frac{3}{sin^2x-cos^2x}\)
3.y=\(\frac{cotx}{cosx-1}\)
3.y=\(\frac{1-sinx}{sinx+1}\)
4.y=\(\frac{1-2cosx}{sin3x-sinx}\)
5.y=\(tanx+cotx\)
6.y=\(\frac{2x}{1-sin^2x}\)
7.y=\(tan\left(3x-1\right)\)
8.y=\(sin\left(x-1\right)\)
9.y=\(\sqrt{\frac{1-sinx}{1+cosx}}\)
10.y=\(\sqrt{sinx+2}\)
Tìm tập xác đinh của các hàm số sau
29 , \(y=\frac{tanx+cosx}{sinx}\)
30 , \(y=\frac{1}{sinx}-\frac{1}{cosx}\)
31 , \(y=\frac{cosx+cotx}{sinx}\)
32 , \(y=\frac{tanx+cotx}{1-sin2x}\)
33 , \(y=tanx+\frac{1}{cos\frac{x}{2}}\)
34 , \(y=\frac{1-tanx}{1-cotx}\)
35 , \(y=\frac{cotx}{cosx-1}\)
36 , \(y=\frac{3}{sin^2x-cos^2x}\)
37 , \(y=\frac{2}{cosx-cos3x}\)
38 , \(y=\frac{\sqrt{x}}{sin\pi x}\)
39 , \(y=\frac{2-cosx}{1+tan\left(x-\frac{\pi}{3}\right)}\)
Tìm GTLN và GTNN:
1.\(y=\sqrt{5-2cos^2x.sin^2x}\)
2.\(y=1+\dfrac{1}{2}sin2x.cos2x\)
3.\(y=\sqrt{1+sinx}-3\)
4.\(y=\sqrt{2+sin^22x}\)