H24

Giúp mình với gấp lắm ạundefined

HP
9 tháng 8 2021 lúc 9:33

a, \(2cos2x-8cosx+5=0\)

\(\Leftrightarrow4cos^2x-8cosx+3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{4+\sqrt{10}}{2}\left(l\right)\\cosx=\dfrac{4-\sqrt{10}}{2}\end{matrix}\right.\)

\(\Leftrightarrow x=\pm arccos\left(\dfrac{4-\sqrt{10}}{2}\right)+k2\pi\)

Bình luận (1)
HP
9 tháng 8 2021 lúc 9:41

b, \(sinx-\sqrt{3}cosx=-\sqrt{3}\)

\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cosx=-\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=-\dfrac{\sqrt{3}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=\dfrac{\pi}{3}+k2\pi\\x-\dfrac{\pi}{3}=\pi-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\pi}{3}+k2\pi\\x=\pi+k2\pi\end{matrix}\right.\)

Bình luận (1)
HP
9 tháng 8 2021 lúc 9:42

c, \(2sin^2x+3\sqrt{3}sinx.cosx-cos^2x=2\)

\(\Leftrightarrow4sin^2x-2+6\sqrt{3}sinx.cosx-2cos^2x+1=3\)

\(\Leftrightarrow3\sqrt{3}sin2x-3cos2x=3\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x=\dfrac{1}{2}\)

\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{6}\right)=\dfrac{1}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{6}=\dfrac{\pi}{6}+k2\pi\\2x-\dfrac{\pi}{6}=\pi-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

Bình luận (1)
HP
9 tháng 8 2021 lúc 9:46

d, \(cos3x+cos2x+cosx+1=0\)

\(\Leftrightarrow2cos2x.cosx+2cos^2x=0\)

\(\Leftrightarrow cosx\left(cos2x+cosx\right)=0\)

\(\Leftrightarrow2cosx.cos\dfrac{3x}{2}.cos\dfrac{x}{2}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos\dfrac{3x}{2}=0\\cos\dfrac{x}{2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\\dfrac{3x}{2}=\dfrac{\pi}{2}+k\pi\\\dfrac{x}{2}=\dfrac{\pi}{2}+k\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{\pi}{3}+\dfrac{k2\pi}{3}\\x=\pi+k2\pi\end{matrix}\right.\)

Bình luận (1)
HP
9 tháng 8 2021 lúc 9:59

e, \(sin2x-cos2x+sinx-cosx=1\)

\(\Leftrightarrow2sinx.cosx-2cos^2x+sinx-cosx=0\)

\(\Leftrightarrow2cosx\left(sinx-cosx\right)+sinx-cosx=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(2cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\cosx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\pm\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)

Bình luận (0)
HP
9 tháng 8 2021 lúc 10:10

f, \(2\left(cos^4x-sin^4x\right)+1=\sqrt{3}cosx+sinx\)

\(\Leftrightarrow2\left(cos^2x-sin^2x\right)\left(cos^2x+sin^2x\right)+1=\sqrt{3}cosx+sinx\)

\(\Leftrightarrow2cos2x+1=\sqrt{3}cosx+sinx\)

\(\Leftrightarrow cos2x+\dfrac{1}{2}=\dfrac{\sqrt{3}}{2}cosx+\dfrac{1}{2}sinx\)

\(\Leftrightarrow cos2x+cos\dfrac{\pi}{3}=\dfrac{\sqrt{3}}{2}cosx+\dfrac{1}{2}sinx\)

\(\Leftrightarrow2cos\left(x+\dfrac{\pi}{6}\right).cos\left(x-\dfrac{\pi}{6}\right)=cos\left(x-\dfrac{\pi}{6}\right)\)

\(\Leftrightarrow\left[2cos\left(x+\dfrac{\pi}{6}\right)-1\right].cos\left(x-\dfrac{\pi}{6}\right)=\text{​​}0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos\left(x+\dfrac{\pi}{6}\right)=\dfrac{1}{2}\\cos\left(x-\dfrac{\pi}{6}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2\pi}{3}+k\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{\pi}{2}+k2\pi\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NQ
Xem chi tiết
VT
Xem chi tiết
VN
Xem chi tiết
NP
Xem chi tiết