H24

Giúp mình với

Cho tam giác nhọn ABC, các điểm D, E, F theo thứ tự thuộc các cạnh AB, BC, CA. Chứng minh rằng trong ba tam giác ADF, BDE, CEF tồn tại một tam giác có diện tích nhỏ hơn hoặc bằng \(\frac{1}{4}\) diện tích tam giác ABC.

HN
31 tháng 12 2016 lúc 18:11

A B C S1 S2 S3 D E F x c-x y a-y z b-z

Kí hiệu như trên hình vẽ.

Giả sử ngược lại, trong ba tam giác S1,S2,S3 không có tam giác nào có diện tích nhỏ hơn hoặc bằng 1/4 diện tích tam giác ABC.

Khi đó ta có : \(\frac{S_1.S_2.S_3}{S}>\frac{1}{64}\)

Hay : \(\frac{x\left(b-z\right).y\left(c-x\right).z\left(a-y\right)}{a^2b^2c^2}>\frac{1}{64}\) (*)

Mặt khác, ta có : \(x\left(c-x\right)\le\frac{\left(x+c-x\right)^2}{4}=\frac{c^2}{4}\)

Tương tự \(y\left(a-y\right)\le\frac{a^2}{4}\) , \(z\left(b-z\right)\le\frac{b^2}{4}\)

Nhân theo vế : \(x\left(c-x\right).y\left(a-y\right).z\left(b-z\right)\le\frac{a^2b^2c^2}{64}\)

hay \(\frac{x\left(b-z\right).y\left(c-x\right).z\left(a-y\right)}{a^2b^2c^2}\le\frac{1}{64}\) (vô lí - trái với (*))

Vậy giả thiết thiết phản chứng sai. Ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
RD
Xem chi tiết
VC
Xem chi tiết
NQ
Xem chi tiết
TH
Xem chi tiết
PT
Xem chi tiết
HP
Xem chi tiết
NH
Xem chi tiết
AL
Xem chi tiết
AL
Xem chi tiết