Chương 1: MỆNH ĐỀ, TẬP HỢP

LF

Giúp mình với cảm ơn mọi người nhiều!
Chứng minh rằng với n>1 và những số tự nhiên khác nhau \(a_1,a_2,a_3,..,a_n\) không thể có đẳng thức

\(\frac{1}{a_1^2}+\frac{1}{a_2^2}+..+\frac{1}{a_n^2}=1\)

NL
14 tháng 9 2020 lúc 22:33

Đặt vế trái biểu thức là P

- Nếu một trong các số bằng 0 thì biểu thức vô nghĩa

- Nếu một trong các số bằng 1 thì vế trái lớn hơn 1 nên đẳng thức ko xảy ra

- Nếu tất cả các số đều lớn hơn 1, không mất tính tổng quát, giả sử \(a_1< a_2< ...< a_n\)

\(\Rightarrow a_1\ge2;a_2\ge3;...;a_n\ge n+1\)

\(\Rightarrow P=\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_n^2}\le\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{\left(n+1\right)^2}\)

\(\Rightarrow P< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{n\left(n+1\right)}\)

\(\Rightarrow P< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}=1-\frac{1}{n+1}< 1\)

\(\Rightarrow\) Không thể tồn tại đẳng thức \(P=1\)

Bình luận (0)

Các câu hỏi tương tự
CD
Xem chi tiết
HD
Xem chi tiết
BN
Xem chi tiết
TN
Xem chi tiết
LA
Xem chi tiết
TT
Xem chi tiết
LF
Xem chi tiết
TN
Xem chi tiết
LT
Xem chi tiết