Giải các phương trình lượng giác sau:
a, sin2x=1
b, \(\frac{sinx-1}{cos2x+1}=0\)
c, sin(3x-\(\frac{\pi}{6}\)) = \(\frac{\sqrt{3}}{2}\)
d, sin(3x-2)=-1
e, sin3x-cos2x=0
f, sin(2x+ \(\frac{\pi}{3}\)) = tan\(\frac{\pi}{3}\)
g, sin(\(3x-\frac{5\pi}{6}\))
Tính giá trị gần đúng của các nghiệm sau:
sin(2x+ \(\frac{\pi}{6}\))= \(\frac{2}{5}\)trong khoảng (\(-\frac{\pi}{3}\); \(\frac{\pi}{6}\))
giải giúp e câu này với ạ
1) \(\sin^2x-\sin x=2\cos^2x\)
2) \(2\sin^2x+\left(1-\sqrt{3}\right)\cos\left(\frac{5pi}{2}-x\right)-\sin\frac{pi}{3}=0\)
3) \(\cos\left(3x+\frac{pi}{4}\right)=\cos\frac{pi}{8}\)
Giair các pt lượng giác sau:
1) \(sin\left(x-\frac{\pi}{4}\right)\left(2cos+\sqrt{2}\right)tan2x=0\)
2) \(tan2x.sinx+3\left(sin-\sqrt{3}tan2x\right)-3\sqrt{3}=0\)
3) \(\frac{cos2x}{sin\left(x+\frac{3\pi}{4}\right)}=\frac{sin\left(x+\frac{3\pi}{4}\right)}{cos2x}\)
4) \(\left(\frac{tanx-1}{tanx+1}+cot2x\right)\left(3tan-\sqrt{3}\right)=0;0< x< \pi\)
Giải các pt lượng giác sau
1) \(cos^2\left(x-\frac{\pi}{6}\right)-sin^2\left(x-\frac{\pi}{6}\right)=sin\left(x+\frac{\pi}{3}\right)\)
2) \(sin^4-sin^4\left(x+\frac{\pi}{2}\right)=sin\left(x+\frac{\pi}{3}\right)\)
3) \(8cos^3\left(x-\frac{\pi}{3}\right)-1=0\)
- Giải phương trình : cos ( x - \(_{^{ }15}o\)) = \(\frac{\sqrt{2}}{2}\)
- Giải các phương trình sau và tìm các nghiệm trong đoạn [ 0;π ]
1. sin ( 3x+1)=sin(x-2)
2. sin ( x - \(^{120^o}\) )+ cos2x=0
3. sin3x + sin ( \(\frac{\pi}{4}\) - \(\frac{x}{2}\) ) = 0
giúp mình với, mình đg cần gấp trong chiều nay, cảm ơn
giải các pt sau:
2. \(\sqrt{3}\) .cosx+sin2x=0
3. 8sinx.cosx.cos2x=cos8(\(\frac{\pi}{16}\) -x)
8. 1+cosx+cos2x+cos3x=0
9. sin2x+sin22x+sin23x+sin24x=2
1) \(\frac{1}{\cos x}+\frac{1}{\sin2x}=\frac{2}{\sin4x}\)
2) \(\cos3x\cdot\tan5x=\sin7x\)
3) \(\tan5x\cdot\tan2x=1\)
4) \(4\cos x-2\cos2x-\cos4x=1\)
5) \(\sin\left(2x+\frac{5\pi}{2}\right)-2\cos\left(x-\frac{7\pi}{2}\right)=1+2\sin x\)
6) \(\sin^22x-\cos^28x=\sin\left(\frac{17\pi}{2}+10x\right)\)
7) \(8\cos x=\frac{\sqrt{3}}{\sin x}+\frac{1}{\cos x}\)
\(\text{sin (\frac{\Pi}{6} + 3x) + sin (\frac{\Pi}{3} + x) + sin x = cos 5x.}\)
a) sin(x-15 độ)=\(\frac{-\sqrt{2}}{2}\)
b) sin(\(\frac{2\pi}{3}-2x\))=\(\frac{\sqrt{3}}{2}\)
c) sin(\(\frac{2x}{3}+\frac{\pi}{4}\))=0
d) sin(\(\frac{2\pi}{5}-x\))=1 với\(\frac{3\pi}{2}< x< \frac{3\pi}{2}\)