\(\left|x+\frac{1}{x}\right|=3x-1\)
\(\orbr{\begin{cases}x+\frac{1}{x}=3x-1\\-x-\frac{1}{x}=3x-1\end{cases}}\)
\(\orbr{\begin{cases}x+\frac{1}{x}-3x+1=0\\-x-\frac{1}{x}-3x+1=0\end{cases}}\)
\(\orbr{\begin{cases}-2x+\frac{1}{x}+1=0\\-4x-\frac{1}{x}+1=0\end{cases}}\)
\(\orbr{\begin{cases}-2x^2+1+x=0\\-4x^2-1+x=0\end{cases}}\)
\(\orbr{\begin{cases}x=-\frac{1}{2};x=1\\x=\frac{1-\sqrt{15t}}{8}\end{cases}}\)
| x + \(\frac{1}{3}\)| = 3x - 1
\(\Rightarrow\)x + \(\frac{1}{3}\)= \(\pm\)( 3x - 1 )
TH1 : x + \(\frac{1}{3}\)= 3x - 1
\(\Rightarrow\)2x = \(\frac{4}{3}\)
\(\Rightarrow\)x = \(\frac{2}{3}\)
TH2 : x + \(\frac{1}{3}\)= - 3x + 1
\(\Rightarrow\)4x = \(\frac{2}{3}\)
\(\Rightarrow\)x = \(\frac{1}{6}\)