NT

giúp mình câu này nhé mọi n:

1:chứng minh với mọi n thuộc N* thì n^3 +n+2 là hợp số

2: cho a^2 +b^2+c^2=a^3+b^3+c^3+1. Tính S=a^2+b^2012 +c^2013

 

 

NT
11 tháng 3 2016 lúc 19:34

sao lâu thế mọi n

Bình luận (0)
VD
11 tháng 3 2016 lúc 20:33

muốn nhanh hải từ từ chứ! :D

1. Vì $n^3$ và $n$ cùng tính chẵn lẻ nên\(n^3+n+2\) chia hết cho 2.

2. Chắc đề là a^2+b^2+c^2=a^3+b^3+c^3=1.

Bình luận (0)
PN
11 tháng 3 2016 lúc 20:54

\(<1>\)  Ta có:

\(n^3+n+2=\left(n^3+1\right)+n+1=\left(n+1\right)\left(n^2-n+1\right)+n+1=\left(n+1\right)\left(n^2-n+2\right)\)

Vợi mọi  \(n\in N^{\text{*}}\)  thì  \(n+1>0\)  và  \(n^2-n+2>0\)

Vậy,  \(n^3+n+2\)  là một hợp số.

\(<2>\)  Từ giả thiết đã nêu trên, ta có:

\(a^2+b^2+c^2=a^3+b^3+c^3\)  \(\left(=1\right)\)

nên  \(a^3+b^3+c^3-\left(a^2+b^2+c^2\right)=0\)

\(\Leftrightarrow\)  \(a^3-a^2+b^3-b^2+c^3-c^2=0\)

\(\Leftrightarrow\)  \(a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)

\(\Leftrightarrow\)  \(^{a=b=c=1}_{a=b=c=0}\)  (dùng dấu ngoặc vuông nhé)

Kết hợp với giả thiết, ta suy ra  \(a,b,c\)  nhận hai giá trị là  \(0\)  và  \(1\)

Do  đó,  \(b^{2012}=b^2;\)  \(c^{2013}=c^2\)

Vậy,  \(S=a^2+b^{2012}+c^{2013}=a^2+b^2+c^2=1\)

Bình luận (0)
QD
11 tháng 3 2016 lúc 21:05

xét  n^3+n luon chẵn=>n^3+n+2 luon chẵn => ĐPCM

Bình luận (0)